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1 Introduction 
For a long time microprocessor designers focused on improving performance of 
sequential applications on single processor machines, achieving an annual 
performance growth rate of over 50% [1]. This phenomenal performance growth 
relied on three main factors: exploiting instruction-level parallelism (ILP), 
decreasing the number of “gates” in each clock cycle by building  faster 
functional units and longer instruction pipelines, and using the faster transistors 
provided by CMOS technology scaling [2, 3]. Unfortunately, the first two factors 
have reached their limit; as a result of this and limitations such as wire delay and 
slowly changing memory latency, single processor performance growth has 
slowed down dramatically [1-3]. In addition, increasing complexity and deeper 
pipelining reduce the power efficiency of high-end microprocessors [4, 5]. These 
trends led researchers and industry towards parallel systems on a chip [6-16]. 
Parallel systems can efficiently exploit the growing number of transistors 
provided by continued technology scaling [2]. 

Programmers must re-write application software to realize the benefits of parallel 
systems on a chip. Since traditional parallel programming models such as shared 
memory and message-passing are not easy to use, researchers have proposed 
a number of new programming models.  Two of the most popular today are 
streaming [17-19] and transactions [20, 21]. Although these new programming 
models are effective for some applications, they are not universal and the 
traditional shared memory model is still being used, especially in conjunction with 
a thread package. Also, new programming models are still evolving as 
researchers refine their APIs [22-24]. 

The goal of the Stanford Smart Memories project is to design a flexible 
architecture that can support several programming models and a wide range of 
applications. Since processors are fundamentally flexible – their operation is set 
by the code they run, our focus was on making the memory system as flexible as 
the processors. Our approach is to design a coarse-grain architecture that uses 
reconfigurable memory blocks [25] and a programmable protocol controller to 
provide the flexible memory system. Memory blocks have additional meta-data 
bits and can be configured to work as various memory structures, such as cache 
memory or local scratchpad, as necessary for a particular programming model or 
application. The protocol controller can be programmed to support different 
memory protocols, like cache coherence or transactional coherence and 
consistency (TCC) [21]. 

The Smart Memories architecture allows researchers to compare different 
programming models and memory system types under the same hardware 
resource constraints and to experiment with hybrid programming models [26, 27]. 

The rest of this section briefly reviews the memory and programming models we 
have already implemented on this architecture and related hardware required for 
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their implementation. These programming models informed our reasoning about 
what were the required types of memory operations. The bulk of the final report is 
in Section 2, which describes the resulting hardware implementation in more 
detail. The design of this hardware was the primary output of this research effort.  
This architecture will be taped-out in Jan 2008, and we hope to have a system up 
and running later in that year.   

In addition to creating the Smart Memory Architecture, this research effort also 
pushed forward the Transactional Memory programming model. This work is 
described in more detail in Section 3. 

 

1.1 Cache-Coherent Shared Memory Model 
In cache-coherent shared memory systems, only off-chip DRAM memory is 
directly addressable by all processors. Because off-chip memory is slow 
compared to the processor, fast on-chip cache memories are used to store the 
most frequently used data and to reduce the average access latency. Cache 
management is performed by hardware and does not require software 
intervention. As a processor performs loads and stores, hardware attempts to 
capture the working set of the application by exploiting spatial and temporal 
locality. If the data requested by the processor is not in the cache, the controller 
replaces the cache line least likely to be used in the future with the appropriate 
data block fetched from DRAM. 

Software threads running on different processors communicate with each other 
implicitly by writing and reading shared memory. Since several caches can have 
copies of the same cache line, hardware must guarantee cache coherence, i.e. 
all copies of the cache line must be exactly the same. Hardware implementations 
of cache coherence typically follow an invalidation protocol: a processor is only 
allowed to modify an exclusive copy of the cache line, and all other copies must 
be invalidated before the write. Invalidation is performed by sending read for 
ownership requests to other caches. A common optimization is to use cache 
coherence protocols such as MESI (Modified/Exclusive/Shared/Invalid), which 
reduce the number of cases where remote cache lookups are necessary. 

To resolve races between processors for the same cache line, requests must be 
serialized. In small scale shared memory systems serialization is performed by a 
shared bus which broadcasts every cache miss request to all processors. The 
processor which wins bus arbitration receives the requested cache line first. Bus-
based cache coherent systems are called also symmetric multi-processors 
(SMP) because any main memory location can be accessed by any processor 
with the same average latency. 

High latency and increased contention make the bus a bottleneck for large 
multiprocessor systems. Distributed shared memory (DSM) systems eliminate 
this bottleneck by physically distributing both processors and memories, which 
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then communicate via an interconnection network. Coherence serialization is 
performed by directories associated with DRAM memory blocks. Directory-based 
cache coherence protocols try to minimize communication by keeping track of 
cache line sharing in the directories and sending invalidation requests only to 
processors which previously requested the cache line. DSM systems are also 
called non-uniform memory access (NUMA) architectures because average 
access latency depends on processor and memory location. Development of 
high-performance applications for NUMA systems can be significantly more 
complicated because programmers need to pay attention to where the data is 
located and where the computation is performed. 

Chip multiprocessors (CMP) have significantly higher interconnect bandwidth and 
lower communication latencies than traditional multi-chip multiprocessors. This 
implies that the efficient design points for CMPs are likely to be different from 
those for traditional SMP and DSM systems. Also, even applications with non-
trivial amount of data sharing and communication can perform and scale 
reasonably well. At the same time, modern CMPs are often limited by total power 
dissipation; low power is consequently one of the main goals of cache coherence 
design. 

To improve performance and increase concurrency, multiprocessor systems try 
to overlap and re-order cache miss refills. This raises the question of a memory 
consistency model: what event ordering does hardware guarantee [28]. 
Sequential consistency guarantees that accesses from each individual processor 
appear in program order, and that the result of execution is the same as if all 
accesses from all processors were executed in some sequential order. Relaxed 
consistency models give hardware more freedom to re-order memory operations 
but require programmers to annotate application code with synchronization or 
memory barrier instructions to insure proper memory access ordering. 

To synchronize execution of parallel threads and to avoid data races 
programmers use synchronization primitives such as locks and barriers. 
Implementation of locks and barriers requires support for atomic read-modify-
write operations, e.g. compare-and-swap or load-linked/store-conditional. Parallel 
application programming interfaces (API) such as POSIX threads [29] and ANL 
macros [30] define application level synchronization primitives directly used by 
the programmers in the code. 

1.2 Streaming Memory Model 
In streaming architectures fast on-chip storage is organized as directly 
addressable memories called scratchpads, local stores, or stream register files 
[9, 13, 17]. We use the term scratchpad in this report. Data movement within chip 
and between scratchpads and off-chip memory is performed by direct memory 
access (DMA) engines which are directly controlled by application software. As a 
result software is responsible for managing and optimizing all aspects of 
communication: location, granularity, allocation and replacement policies, and the 
number of copies. For applications with simple and predictable data flow all data 
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communication can be scheduled in advance and completely overlapped with 
computation, thus hiding communication latency. 

Since data movements are managed explicitly by software, complicated 
hardware for coherence and consistency is not necessary. Hardware architecture 
should support DMA transfers between local scratchpads and off-chip memory.1 
Processors can access their local scratchpads as FIFO queues or as randomly 
indexed memories [31]. 

Streaming is similar to message-passing applied in the context of CMP design. 
However, there are several important differences from traditional message-
passing in clusters and massively parallel systems. Communication is managed 
at the user level software and its overhead is low. Messages are exchanged at 
the first level of memory hierarchy, not the last one, and software has to take into 
account limited size of local scratchpads. Since communication between 
processors happens within a chip, the latency is low and the bandwidth is high. 
Finally, software manages both the communication between processors and the 
communication between processor scratchpads and off-chip memory. 

Researchers have proposed several stream programming languages: 
StreamC/KernelC [17], StreamIt [19], Brook GPU [32], and Sequoia [33]. These 
languages differ in the level of abstraction but they share some basic concepts. 
Streaming computation must be divided into a set of kernels, i.e. functions which 
can not access arbitrary global state. Inputs and outputs of the kernel are called 
streams and must be specified explicitly as kernel arguments. Stream access 
patterns are typically restricted. Another important concept is reduction variables 
which allow a kernel to do calculations involving all elements of the input stream, 
such as the stream’s summation. 

Restrictions on data usage in kernels allow streaming compilers to determine 
computation and input data per element of the output stream, to parallelize 
kernels across multiple processing elements, and to schedule all data 
movements explicitly. In addition, the compiler optimizes the streaming 
application by splitting or merging kernels to balance loading, to fit all required 
kernel data into local scratchpads, or to minimize data communication through 
producer-consumer locality [17]. The complier also tries to overlap computation 
and communication by performing stream scheduling: DMA transfers run during 
kernel computation, which is equivalent to macroscopic prefetching. 

To develop a common streaming compiler infrastructure, Stanford researchers 
have proposed the stream virtual machine (SVM) abstraction [34, 35]. SVM gives 

                                            
1Some recent stream machines use caches for the control processor.  In these cases, while the 
local memory does not need to maintain coherence with the memory, the DMA often needs to be 
consistent with the control processor.  Thus in the IBM Cell processor the DMA engines are 
connected to coherent bus and all DMA transfers are performed to coherent address space [13]. 
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high-level optimizing compilers for stream languages a common intermediate 
representation.  

1.3 Transactional Memory Model 
The traditional shared memory programming model usually requires 
programmers to use low-level primitives such as locks for thread synchronization. 
Locks are required to guarantee mutual exclusion when multiple threads access 
shared data. However, locks are hard to use and error-prone – especially when 
programmer is trying to avoid deadlock or to improve performance and scalability 
by using fine-grain locking [36]. Lock-based parallel applications can also suffer 
from priority inversion, and convoying [20]. These arise when subtle interaction 
between locks cause high priority tasks to wait for lower priority tasks to 
complete. 

Lock-free shared data structures allow programmers to avoid problems 
associated with locks [37]. This methodology requires only standard compare-
and-swap instruction but introduces significant overheads and thus it is not 
widely used in practice. 

Transactional memory was proposed as a new multiprocessor architecture and 
programming model intended to make lock-free synchronization as efficient as 
conventional techniques based on locks [20]. Transactional memory allows 
programmers to define custom read-modify-write operations that can be applied 
to multiple arbitrary words in memory. The programmer must annotate 
applications with start transaction/end transaction commands; the hardware 
executes all instructions between these commands as a single atomic operation. 
Other processors or threads can only observe transaction state before or after 
execution; intermediate state is hidden. If transaction conflict is detected, such as 
one transaction updating  a memory word read by another transaction, one of 
conflicting transactions must re-executed. 

The concept of transactions is the same as in database management systems 
(DBMS). In DBMS, transactions provide the properties of atomicity, consistency, 
isolation, and durability (ACID). Transactional memory programming model is 
similar to database programming. The key difference is the number of 
instructions per transaction and the amount of state read or written by the 
transaction. 

Transactional memory implementations have to keep track of transaction read-
set, all memory words read by the transaction and write-set, and all memory 
words written by the transaction. Read-set is used for conflict detection between 
transactions, while write-set is used to track speculative transaction changes 
which will become visible after transaction commit or will be dropped after 
transaction abort. Conflict detection can be either eager or lazy. Eager conflict 
detection checks every individual read and write performed by the transaction to 
see if there is a collision with another transaction. Such an approach allows early 
conflict detection but requires read and write sets to be visible to all other 
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transactions in the system. In the lazy approach, conflict detection is postponed 
until the transaction tries to commit. 

Another design choice for transactional memory implementations is the type of 
version management. In eager version management, the controller writes 
speculative data directly into the memory as a transaction executes and keeps 
an undo log of the old values [38]. Eager conflict detection must be used to 
guarantee transaction atomicity with respect to other transactions. Transaction 
commits are fast since all data is already in place but aborts are slow because 
old data must be copied from the undo log. This approach is preferable if aborts 
are rare but may introduce subtle complications such as weak atomicity [39]: 
since transaction writes change the architectural state of the main memory they 
might be visible to other threads that are executing non-transactional code. 

Lazy version management is another alternative, where the controller keeps 
speculative writes in a separate structure until a transaction commits. In this case 
aborts are fast since the state of the memory is not changed but the commits 
require more work. It is easier to support strong atomicity: complete transaction 
isolation from both transactions and non-transactional code executed by other 
threads [39]. 

Transactional memory implementations can be classified as hardware 
approaches (HTM) [20, 21], software-only (STM) techniques [40], or mixed 
approaches.  Two mixed approaches have been proposed: hybrid transactional 
memory (HyTM) supports transactional execution in hardware but falls back to 
software when hardware resources are exceeded [41, 42], while hardware-
assisted STM (HaSTM) combines STM with hardware support to accelerate STM 
implementations [44, 45]. 

In some proposed hardware transactional memory implementations, a separate 
transactional or conventional data cache is used to keep track of transactional 
reads and writes [20]. For either cache type, transactional support extends 
existing coherence protocols such as MESI to detect collisions and enforce 
transaction atomicity. The key issues with such approaches are arbitration 
between conflicting transactions and dealing with overflow of hardware 
structures. Memory consistency is also an issue since application threads can 
execute both transactional and non-transactional code. 

Transactional coherence and consistency (TCC) is a transactional memory 
model in which atomic transactions are always the basic unit of parallel work, 
communication, and memory coherence and consistency [21]. Each of the 
parallel processors in TCC model continually executes transactions. Each 
transaction commits its writes to shared memory only as an atomic block after 
arbitration for commit. Only one processor can commit at a time by broadcasting 
its transactional writes to all other processors and to main memory. Other 
processors check incoming commit information for read-write dependency 
violations and restart their transactions if violations are detected. Instead of 
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imposing some order between individual memory accesses, TCC serializes 
transaction commits. All accesses from an earlier committed transaction appear 
to happen before any memory references from a later committing transaction, 
even if actual execution was performed in an interleaved fashion. The TCC 
model guarantees strong atomicity because the TCC application only consists of 
transactions. Hardware overflow is also easy to handle: a transaction that detects 
overflow before commit stalls, and must arbitrate for the commit token.  Once it 
has the token, it is no longer speculative, and can commit its previously 
speculative changes to free up hardware resources, and then continue 
execution.  It can’t release the commit token until it hits commit point in the 
application. Clearly this serializes execution, since only one thread can have the 
commit token at a time, but it does allow overflows to be cleanly handled. 

A Programmer using TCC divides the application into transactions that will be 
executed concurrently on different processors. The order of transaction commits 
can be optionally specified. Such situations usually correspond to different 
phases of the application which must be separated by synchronization barriers in 
lock-based model. To deal with such ordering requirements TCC has hardware-
managed phase numbers for each processor which can be optionally 
incremented upon transaction commit. Only transactions with oldest phase 
number are allowed to commit at any time. 

Stanford researchers have proposed the OpenTM application programming 
interface (API), which provides a common programming interface for various 
transactional memory architectures [24]. 

1.4 Memory System Features 
In looking over all three programming models, we find a number of common 
elements.  All the designs use fast local memory close to the processor.  This 
memory often has some state bits associated with it, but the use of the state is 
different in the different programming models.  For example, in a cache it tracks 
the “state” of the cache line, for transactional memory it needs also to track data 
that is speculatively read or written, and for streaming it might be used to track 
whether the DMA has actually fetched a given word.  In addition to the different 
uses of the state bits, the amount and connection of the local memories also 
differs in different machine models, and even between different applications 
within a programming model.  This meant we needed to provide both flexible 
state bits in our memory system, and method for the processor to leverage these 
bits.  The design of this flexible memory system is described in Section 2.3.   

In addition to the flexible local memory, all these memory systems require a 
relatively sophisticated protocol engine that can handle the movement of data 
between the main memory and the local memories. Each of the programming 
models thinks about this movement differently, DMAs for streaming, cache fills 
and spills for shared memory, and commits in transactions, but the underlying 
operations are all pretty similar.  They all require a mechanism to move blocks of 
data between the cache and the memory system, track outstanding requests, 
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and for some protocols, maintain some ordering of events.  In the Smart Memory 
system, the reconfigurable protocol controller handles these functions, and is 
described in Section 2.5.  

The core processor that connects to the memory system initially was a custom 
designed processor that could flexible change its resources to better match the 
computational requirements of the different programming models.  During the 
start of this research effort we realized that we could build this processor, but we 
did not have the resources to create the complete software tool chain that would 
be needed to make the processor truly useful. At that point we decided to use the 
Tensilica configurable processor, and use the configuration to make it work in our 
system.  The next section reviews the overall design of our Smart Memory 
architecture, beginning with the overview of the entire system and a description 
of the memory clustering that was used.  Section 2.2 describes the processor 
core in more detail, including how we used the Tensilica system to provide the 
special memory operations we needed. 
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2 Smart Memories Implementation 

 

Figure 1 Smart Memories Architecture 

The Smart Memories architecture was designed to support three different 
programming models and to accommodate VLSI physical constraints. As shown 
in Figure 1, the system consists of Tiles, each with two VLIW cores, several 
reconfigurable memory blocks, and a crossbar connecting them. Four adjacent 
Tiles form a Quad. Tiles in the Quad are connected to a shared protocol 
controller. Quads are connected to each other and to the off-chip interfaces using 
a mesh-like network. 

The reconfigurable memory system is the key element of the Smart Memories 
architecture that allows it to support different programming models. The design of 
the memory system is based on the observation that, although different 
programming models place different requirements on the memory systems, the 
underlying hardware resources and operations are very similar. For example, the 
same memory blocks can be used to store data in caches or in stream register 
files; extra memory bits are used to store meta-data such as cache line state in 
conventional caches and “speculative” bits in transactional caches [21]. By 
adding a small amount of extra logic we can configure the same memory 
resources to behave differently. 

The memory system consists of three major reconfigurable blocks, highlighted in 
Figure 1. The memory interface in each Tile (Load/Store Unit) coordinates 
accesses from processor cores to local memories and allows reconfiguration of 
basic memory accesses. A basic operation, such as a Store instruction, can treat 
a memory word differently in transactional mode than in conventional cache 
coherent mode. The memory interface can also broadcast accesses to a set of 
local memory blocks. For example, when accessing a set-associative cache, the 
access request is concurrently sent to all the blocks forming the cache ways. 

Each memory mat in the Tile is an array of data words; each data word is 
associated with a few meta-data bits. Meta-data bits store the status of that data 
word and their state is considered in every memory access; an access to this 
word can be discarded based on the status of these bits. For example, when 
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mats are configured as a cache, these bits are used to store the cache line state, 
and access is discarded if the status indicates that cache line is invalid. The meta 
data bits are dual ported, so they are updated atomically  with access to the data 
word. The update functions are set by the configuration. A built-in comparator 
and a set of pointers allow the mat to be used as tag storage (for cache) or as a 
FIFO. Mats are connected to each other through an inter-mat network that 
communicates control information when the mats are accessed as a group. 
While the hardware cost of reconfigurable memory blocks is high in our standard-
cell prototype, full custom design of such memory blocks can be quite efficient 
[25]. 

The protocol controller is a reconfigurable control engine that can execute a 
sequence of basic memory system operations to support memory mats. These 
operations include  loading and storing data words (or cache lines) into mats, 
manipulating meta-data bits, keeping track of outstanding requests from each 
Tile, and broadcasting data or control information to Tiles within the Quad. This 
controller is connected to a network interface for sending and receiving requests 
to/from other Quads or off-chip interfaces.  

Mapping a programming model to the Smart Memories architecture requires 
configuration of memory mats, Tile interconnect and protocol controller. For 
example, when implementing a shared-memory model, memory mats are 
configured as instruction and data caches, the Tile crossbar routes processor 
instruction fetches, loads, and stores to the appropriate memory mats, and the 
protocol controller acts as a cache coherence engine, which refills the caches 
and enforces coherence invariance. 

2.1 Memory System Protocols 
As previously mentioned, Smart Memories supports both a cache-coherent 
shared memory model and Transactional Coherence and Consistency. This 
section describes memory system protocols to implement necessary semantics 
of these programming models. In addition, a fine-grain synchronization protocol, 
which is used by all of the target programming models for providing 
synchronization primitives, is described in this section. 

2.1.1 Coherence protocol 
In the shared memory model, the memory system provides processors with local 
instruction and data cached to capture spatial and temporal locality of the 
applications’ memory accesses. These caches need to be kept coherent by 
hardware such that each read to a memory address returns the value of the last 
write.  

Smart Memories implements a hierarchical MESI coherence protocol to enforce 
coherence between all caches in the system. Data and instruction address 
spaces are kept coherent separately and not against one another. Coherence is 
maintained in two steps: a protocol controller in the Quad keeps caches within 
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the Quad coherent, while one or more memory controllers are responsible for 
enforcing coherence among Quads. Memory requests go through points of 
serialization; memory requests from different caches that are within a Quad are 
serialized in the Quad’s protocol controller, while memory requests from different 
Quads are serialized at the global level by the home memory controller for the 
specific cache line. 

After a cache miss request passes the serialization point in the Quad’s protocol 
controller, other Quad caches are searched (or “snooped”) to update the state of 
the cache line according the MESI protocol. The protocol controller is capable of 
performing cache-to-cache transfers between Quad caches and merging 
requests from different sources inside the Quad to reduce latency and bandwidth 
requirements. If a cache request cannot be satisfied locally, a miss request is 
sent to the home memory controller to fetch the cache line. 

The home memory controller of the cache line essentially takes the same steps 
at a higher level; after receiving a cache miss request and serializing it against 
any other outstanding cache misses, it broadcasts appropriate coherence 
requests to all Quads except the one which sent the original cache miss to 
inquire about the state of the cache line. Protocol controllers receive coherence 
requests, snoop caches and update the state according to MESI protocol. They 
send coherence replies back to the inquiring memory controller which might or 
might not contain the cache line (depending on type of the request and state of 
the cache line within the Quad). 

 

Figure 2 Steps in enforcing coherence 
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Figure 2 shows the steps involved in processing a sample cache miss request. 
These steps are as follows: 

1- Cache miss request is received by protocol controller and is serialized 
properly 

2- Local caches are snooped, state of any local copy of the cache line is 
adjusted 

3- Cache miss request is sent to memory controller and is serialized properly 
with respect to requests from other Quads 

4- Coherence requests are sent to Quads except the one that originated 
cache miss  

5- Main memory is accessed in parallel go fetch the cache line 
6- Protocol controller snoops caches and adjusts cache line states 
7- Coherence replies are sent back to memory controller, which may or may 

not contain the actual cache line 
8- Reply for the original cache miss is sent back after collecting all replies 
9- Cache line is refilled and requested data word is sent to processor  

 

Protocol controllers are capable of merging requests from different processors 
within the Quad to avoid sending unnecessary requests to memory controllers. 
Also, coherence can be turned on or off for parts of the address space by setting 
control bits within the protocol and memory controllers. This allows the private 
regions of the address space to be marked as not coherent and hence reduces 
the coherence traffic as well as latency of completing such requests. 

2.1.2 Transactional Coherence and Consistency 
As its transactional programming model, Smart Memories implements 
transactional coherence and consistency (TCC). TCC leverages the same 
hardware components and operations used for cache coherence and streaming. 
The operations of the memory system in for implementing TCC protocol is 
described in this subsection. 

As mentioned previously, TCC uses lazy conflict detection and eager commits. 
Transactional modifications are stored in processor’s data cache and are 
broadcast to other transactions only after commit. Each read/write operation 
marks the accessed word in the data cache with an SR (speculatively read) or 
SM (speculatively modified) bits. Hence, transaction’s read set and write set are 
completely specified within processor’s data cache. Whenever the transaction 
finishes, it arbitrates for acquiring a commit token, which allows it to make its 
changes visible to others. If the transaction wins the arbitration, it asks protocol 
controller of its Quad to commit its write set.  

Committing the write set of the transaction causes its modification to be written 
back to main memory as well as updating those words in other caches of the 
system. At the same time, the read set of other transactions are checked to 
detect any possible data dependence violation. A dependence violation is 
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detected if the committing word is found in the data cache of another transaction 
and it is marked with the SR bit. 

Similar to the coherence protocol, commit is also a two level process. Upon 
request from a committing transaction, a Quad’s protocol controller uses its DMA 
engine to read the committing transaction’s write set out of its data cache. For 
each word read, protocol controller then searches (“snoops”) other data caches 
and updates the word if it is found. No action is taken if the word is not found in a 
data cache or if it is already is marked as SM (this means the other transaction 
has created its own copy of the data word). However, if the word is found and it is 
marked as SR, processor owning the cache is informed to abort the transaction 
and restart. 

Next, words are sent to the owning memory controller and are written to main 
memory. The memory controller also broadcasts the words to other Quads within 
the system, so that they can also update their caches and check for violations. 
Figure 3 shows the steps involved in the process: 

 

1- Word is read from committing processor’s data cache 
2- It is written to other caches in the Quad. SR bit of the word in those 

caches is checked. 
3- Data is sent to owner memory controller 
4- It is written to main memory 
5- Memory controller broadcasts the word to all other Quads 
6- Each Quad receives the word and writes it to its caches. SR bit of the 

word in each cache is checked to detect violations. 
 

The commit procedure shares the same basic hardware mechanisms as cache 
coherence, such as cache searches (snoops) and broadcasting commit requests 
to all Quads. It also leverages the DMA engines, which are heavily used in the 
streaming mode, for reading data out of source cache. When implementing TCC, 
the protocol controller also satisfies data and instruction cache misses in 
basically the same way as for shared memory mode. The difference however is 
that the coherence protocol is turned off and the cache line is always directly 
fetched from off-chip memory. 
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Figure 3 Steps for committing transactions write set 

2.1.3 Fast, fine-grain synchronization protocol 
To provide the programmer with the basic synchronization primitives such as 
locks and barriers necessary for parallel applications, Smart Memories 
implements a set of atomic read-modify-write operations in the memory system. 
These operations leverage the state bits associated with the data words, 
essentially treating them as lock bits. Necessary instructions are added to the 
processor’s ISA to enable such operations.  

When accessed by a synchronization operation, a word has two additional state 
bits: Full/Empty (F/E) and Wait (W) bits. The F/E bit essentially is an indication of 
whether the data word is currently full or empty. If the word is empty, its content 
cannot be read, and if it is full, it cannot be written. Hence, synchronization 
operations may succeed or fail based on the current value of this bit. The Wait bit 
indicates that there has been an unsuccessful attempt for reading or writing this 
word and that whenever a synchronization operation succeeds, it has to wake up 
the previous unsuccessful access so that it can retry reading/writing the word. 

These bits are updated atomically by the synchronization access and processors 
also send out messages to the home memory controller of the word to report a 
successful or unsuccessful synchronization operation. There are two types of 
messages: a sync miss message indicates that a processor had an unsuccessful 
access and is stalled. A wakeup notification indicates that there was a successful 
synchronization access and a sleeping reader or writer needs to be awakened to 
retry its access. Table 1 summarizes synchronization operations defined for the 
processors, their semantics, and messages sent to the memory controller in each 
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case. These instructions and state bits are discussed further in the later sections 
of this report. 

 

Current New Instruction 

F/E W F/E W 

Operation 

0 X 0 1 Stall processor, Send sync load miss request 

1 0 0 0 Read data 

Sync Load 

1 1 0 0 Read data, Send writer wakeup notification 

0 0 1 0 Write data 

0 1 1 0 Write data, Send reader wakeup notification 

Sync Store 

1 X 1 1 Stall processor, Send sync store miss request 

X 0 0 0 Read data Reset Load 

X 1 0 0 Read data, Send writer wakeup notification 

X 0 1 0 Write data Set Store 

X 1 1 0 Write data, Send reader wakeup notification 

0 X 0 1 Stall processor, Send future load miss request 

1 0 1 0 

Future Load 

1 1 1 1 

Read data 

Table 1  Semantics of Synchronization Operations 

Note that Reset Load and Set Store operations are always successful. They do 
not pay attention to the value of the F/E bit and always read/write the data word. 
Future load operation is the same as Sync Load, the only difference is that it 
does not reset the F/E bit after reading data word, hence does not “consume” the 
data and therefore it never sends a wakeup notification. 

Sync miss messages include the address of the data word, the type of operation 
(sync load, sync store, future load) and the ID of the unsuccessful. Based on the 
address, these messages are routed to the appropriate memory controller and 
are queued until they are awakened.  
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Wakeup notifications carry the address of the word and the type (reader/writer). 
Depending on the type of the wakeup, the memory controller selects a sync miss 
from its queue that has the same address and sends it back to the protocol 
controller. The protocol controller retries the synchronization operation on behalf 
of the issuing processor and if it is successful, it notifies and un-stalls the 
processor. Figure 4 shows a simple example of how the protocol works: 

 

Figure 4  Steps in enforcing coherence 

1- Processor P1 accesses a word with a sync load operation and stalls. It 
sets W=1. 

2- It sends a sync load miss message to protocol controller. 
3- Message is sent to memory controller and it is queued. 
4- Processor P2 accesses the same word with a sync store operation, 

successfully writes data word, sets F/E=1 and observes W bit to be 
one. 

5- It sends a reader wakeup notification to protocol controller 
6- Wake up is sent to memory controller 
7- Memory controller takes P1’s sync load out of the queue and sends a 

replay request to protocol controller 
8- Protocol controller replays sync load on behalf of P1, reads the data 

word and clears F/E bit. 
9- It returns the data word back to P1 and un-stalls the processors 

 

Synchronization accesses can be issued to both cached and un-cached 
addresses. When issued to a cached address, all synchronization operations are 
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considered as writes, which need to acquire ownership of the cache line before 
they can attempt to read or write the word. The synchronization protocol relies on 
the underlying coherence mechanisms to refill the cache line with proper 
ownership before it attempts the synchronization access.  

For un-cached addresses, synchronization accesses can only be issued to on-
chip memories. They are simply routed to the Quad which contains the word and 
are replayed by its protocol controller on behalf of the issuing processors. Sync 
misses are still sent to memory controllers and queued there. 

2.2 Processor 

2.2.1   Overview of Tensilica LX 
Tensilica  provides the configurable embedded Xtensa processor. Tensilica’s 
Xtensa Processor Generator automatically generates a synthesizable hardware 
description for the user customized processor configuration. The user can select 
pre-defined options such as floating-point co-processor (FPU) and can define 
custom instruction set extensions using the Tensilica Instruction Extension 
language (TIE). 

The base Xtensa architecture is a 32-bit RISC instruction set architecture (ISA) 
with 24-bit instructions and windowed general-purpose register file. Register 
windows are 16-register wide. The total number of physical registers is 32 or 64. 

The base Xtensa ISA pipeline is either five or seven pipeline stages and has a 
user selectable memory access latency of one or two. Two cycle memory latency 
allows designers to achieve faster clock cycles or to relax timing constraints on 
memories and wires. 

The core supports some predefined options and ISA extensions: 

- 16-bit wide instruction option for code density; 
- 16-bit integer multiply-accumulator; 
- 32-bit integer multiplier; 
- 32-bit integer divider; 
- 32-bit floating-point co-processor; 
- 64-bit floating-point accelerator; 
- 128-bit integer SIMD unit; 
- configurable interrupts and timers; 
- on-chip debug (OCD) port (via JTAG); 
- instruction trace port. 

 

Tensilica gives users a number of memory options: 

- big or little endian; 
- configurable width of load/store unit: 32/64/128; 
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- configurable instruction fetch width: 32/64; 
- configurable instruction and data caches: 

o size (0-32KB) ; 
o associativity (1-4); 
o cache line size (16/32/64B); 
o write-through or write back; 

- optional data RAM and/or ROM (0-256KB); 
- optional instruction RAM and/or ROM (0-256KB); 
- optional Xtensa Local Memory Interface (XLMI); 
- optional Processor Interface (PIF) to external memory system; 
- parity or Error Correction Code (ECC) options. 
-  

In addition to pre-defined options and extensions, a user can define custom 
processor extensions using the TIE language. TIE permits addition of registers, 
register files, and new instructions to improve performance of the most critical 
parts of the application. Multiple operation instruction formats can be defined 
using the Flexible Length Instruction eXtension (FLIX) feature to further improve 
performance. 

Another feature of the TIE language is the ability to add user-defined processor 
interfaces such as simple input or output wires, queues with buffers, and lookup 
device ports. These interfaces can be used to interconnect multiple processors or 
to connect a processor to other hardware units. 

The TIE compiler generates a customized processor, taking care of low-level 
implementation details such as pipeline interlocks, operand bypass logic, and 
instruction encoding. 

Tensilica also provides customized software tools and libraries: 

- instruction set simulator: 
o standalone single processor cycle-accurate simulator for 

performance modeling; 
o standalone single processor fast functional simulator for software 

development; 
o processor model for user-designed multi-processor simulator 

(through Tensilica’s XTMP API); 
- software development tools (based on GNU software tool chain): 

o optimizing C/C++ compiler; 
o linker; 
o assembler; 
o debugger; 
o profiler; 

- XPES compiler: generator of application-specific TIE extensions; 
- standard software libraries (GNU libc) for application development. 
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2.2.2 Interfacing Tensilica processor to Smart Memories   
Connecting the Tensilica processor to the reconfigurable memory system is 
complicated because Tensilica interfaces were designed for different 
applications. Figure 5 shows all available memory and interface options. 
Although Xtensa processor has interfaces to implement instruction and data 
caches, these options do not support the functionality and flexibility necessary for 
Smart Memories architecture. For example, Xtensa caches do not support cache 
coherence. Cache interfaces are connected directly to SRAM arrays for cache 
tags and data, and the processor contains all the logic required for cache 
management. As a result, it is impossible to modify the functionality of the Xtensa 
caches or to re-use the same SRAM arrays for different memory structures like 
local scratchpads. 

In addition to simple load and store instructions, the Smart Memories architecture 
supports several other memory operations such as synchronized loads and 
stores. These memory operations can easily be added to the instruction set of 
the processor using TIE language but it is impossible to extend Xtensa memory 
interfaces to support such instructions. 

 

Shared Memories 

 

Figure 5 Xtensa Interfaces 

Instead of cache interfaces we decided to use instruction and data RAM 
interfaces as shown in Figure 6. In this, case instruction fetches, loads and stores 
are sent to interface logic (Load Store Unit) that converts them into actual control 
signals for memory blocks used in the current configuration. Special memory 
operations are sent to the interface logic through TIE lookup port which has the 
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same latency as the memory interfaces. If the data for a processor access is 
ready in 2 cycles, the interface logic sends it to the appropriate processor pins. If 
the reply data is not ready due to cache miss, arbitration conflict or remote 
memory access, the interface logic stalls processor clock until the data is ready. 

InterfaceCLKXtensa  
Logic 
(LSU) Processor 

 

Figure 6 Processor Interfaces to Smart Memories 

The advantage of this approach is that the instruction and data RAM interfaces 
are very simple: they consist of enable, write enable/byte enables, address and 
write data outputs and return data input. The meaning of the TIE port pins are 
defined by instruction semantics described in TIE. Processor logic on the critical 
path is minimal. Interface logic is free to perform any transformations with the 
virtual address supplied by the processor. 

Special load instructions such as synchronized loads supported by Smart 
Memories are different from ordinary load instructions in that they can have side 
effects, i.e. alter architectural state of the memory. Standard load instructions do 
not have side effects, i.e. do not alter architectural state of the memory system, 
and therefore they can be executed by the processor as many times as 
necessary. This can happen because of processor exceptions as shown in 
Figure 7: loads are issued to the memory system at the end of E stage, load data 
is returned to the processor at the end of M2 stage, while the processor commit 
point is in W stage, i.e. all processor exceptions are resolved only in W stage. 
Stores are issued only in W stage after commit point. 
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commit point

F1 F2 D  E  M1 M2 W  U1 U2 

 

Figure 7 Processor Pipeline 

Since it is very difficult to undo side effects of special memory operations, they 
are also issued after commit point in W stage. Processor pipeline was extended 
by 2 stages (U1 and U2 in Figure 7) to have the same 2 cycle latency for special 
load instructions. 

However, having different issue stages for different memory operations creates 
the memory ordering problem as illustrated in Figure 8a. A load following 
synchronized load in the application code is seen by the memory system before 
the synchronized load because it is issued in the E stage. To prevent such re-
ordering, we added pipeline interlocks between special memory operations and 
ordinary loads and stores. An example of such interlock is shown in Figure 8b. 
The load is stalled in the D stage for 4 cycles to make sure the memory system 
sees it 1 cycle after previous synchronized load. One extra empty cycle is added 
between 2 consecutive operations to simplify memory system logic for the case 
of synchronization stalls. 
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issue data 

s. load F1 F2 D  E  M1 M2 W  U1 U2 

load       F1 F2 D  E  M1 M2 W  U1 U2 

issue data

a) 

issue data 

s. load F1 F2 D  E  M1 M2 W  U1 U2 

load       F1 F2 D  -  -  -  -  E  M1 M2 W  U1 U2 

issue data b) 
 

Figure 8 Memory operation pipeline: a) without interlocks; b) with interlocks 

Another issue is related to very tight timing constraints on the processor clock 
signal as shown in Figure 9. The forward path for the memory operation data 
issued by the processor is going through the flop in the interface logic and then 
through the flop in the memory mat. In the reverse path the output of memory 
mat goes to the stall logic and determines whether the processor clock should be 
stalled or not. To avoid glitches on the processor clock the output of the stall logic 
must go through a flop clocked with inverted clock. The whole reverse path 
including memory mat, crossbar and stall logic delays should fit in a half clock 
cycle. This half cycle path is the most critical in the whole design and determines 
clock cycle time. 
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Xtensa Processor 

 

Figure 9  Processor and Tile Pipeline 

To relax timing constraints, the processor is clocked with inverted clock: the 
reverse path delay becomes the whole clock cycle, rather than just the half cycle. 

2.2.3 Special Memory Access Instructions 
Several instructions were added to the Tensilica processor to exploit functionality 
of Smart Memories architecture: 

synchronized load: stall if full/empty (FE) bit associated with data word is zero 
(“empty”), unstall when FE bit becomes one (“full), return data word to the 
processor and flip atomically FE bit to zero; 

synchronized store: stall if FE bit is 1, unstall when it becomes 0, write data word 
and flip atomically FE bit to 1; 

future load: the same as synchronized load but FE bit is not changed; 

reset load: reset FE bit to 0 and return data word to the processor without stalls 
regardless of the state of FE bit; 
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set store: set FE bit to 1 and write data word without stalls; 

meta load: read the value of meta data bits associated with data word; 

meta store: write to meta data bits; 

raw load: read data word skipping virtual-to-physical address translation, i.e. 
effective address calculated by the instruction is used as physical address 
directly; 

raw store: write data word skipping virtual-to-physical address translation; 

raw meta load: read meta data word skipping virtual-to-physical address 
translation; 

raw meta store: write meta data word skipping virtual-to-physical address 
translation; 

fifo load: read a value from a memory mat configured as a FIFO, FIFO status 
register in the interface logic is updated with FIFO status information, i.e. whether 
FIFO was empty; 

fifo store: store a value to a FIFO, FIFO status register is updated with FIFO 
status information, i.e. whether FIFO was full; 

safe load: read a data word from the memory and ignore virtual-to-physical 
address translation errors; 

memory barrier: stall the processor while there are outstanding memory 
operations, i.e. non-blocking stores; 

hard interrupt acknowledgement: signal to the memory system that hard interrupt 
was received by the processor, this instruction is supposed to be used only 
inside interrupt handler code; 

mat gang write: gang write all meta data bits in the memory mat, supported only 
for 3 meta data bits; 

conditional mat gang write: conditionally gang write all meta data bits in the 
memory mat, supported only for one meta data bit; 

cache gang write: gang write all meta data bits in the data cache, supported only 
for 3 meta data bits; 

conditional cache gang write: conditionally gang write all meta data bits in the 
data cache, supported only for one meta data bit. 

These instructions use TIE lookup port to pass information from processor to the 
memory system as described in the previous section. 
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2.2.4 Pre-Defined and VLIW Processor Extensions 
To increase the computational capabilities and usability of the Smart Memories 
architecture, the following pre-defined processor options were selected: 

- 32-bit integer multiplier; 
- 32-bit integer divider; 
- 32-bit floating point unit; 
- 64-bit floating point accelerator; 
- 4 scratch registers; 
- On-Chip Debug (OCD) via JTAG interface; 
- instruction trace port; 
- variable 16/24/64-bit instruction formats for code density and FLIX/VLIW 

extension. 
 

To further improve performance of the processor and utilization of the memory 
system, we added several multi-instruction formats using FLIX/VLIW capability of 
Tensilica system: 

- {ANY; INT; FP}; 
- {ANY; NOP; FP}; 
- {ANY; INT; LIMITED INT}; 

where ANY means any type instruction, INT means integer instruction type 
(excluding memory operations), FP means floating-point instruction type, 
LIMITED INT means a small subset of integer instructions which require at most 
1 read and 1 write port.  

The reason for this choice of instruction formats is the limitation of Xtensa 
processor generator: register file ports can not be shared between different slots 
of FLIX/VLIW format. For example, FP multiply-add instruction requires 3 read 
and 1 write ports, if such operation can be present in 2 different slots, then FP 
register file must have at least 6 read and 2 write ports even if 2 such operations 
are never put in the same instruction. On the other hand, memory operations can 
only be allocated in slot 0 and the common usage case is to have memory 
operation and compute operation such as multiply-add in the same instruction. 
This means that it should be possible to have FP operations in slots other than 0 
but the number of such slots should be minimal. 

2.2.5 Processor Extension for Recovery from Missed Speculation 
To be able to restart execution of a speculative transaction after violation, the 
system state must be saved at the beginning of the transaction. There are two 
distinct components of system state in the Smart Memories architecture: memory 
system state and the processor state. Memory system state can be quickly 
restored to the check point because all speculative changes are buffered in the 
data cache and can be easily erased by invalidating cache lines with gang write 
operations. 
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Processor state consists of the general purpose register files (integer and floating 
point) and various control registers. Our approach is to force the compiler to spill 
general purpose registers into the stack memory at the transaction check point 
using the asm volatile construct. After a check point,  the compiler inserts load 
instructions to reload the values into the register files. The advantage of this 
approach is that compiler spills only live register values, minimizing the number 
of extra load and store instructions. 

Spilled register values in the memory are check-pointed using the same 
mechanism as other memory state. The only general purpose register that can 
not be check-pointed this way is the stack pointer register a1; we use a separate 
mechanism for the stack pointer as well as other processor control registers. 

To save the state of control registers we added 3 more registers and used one of 
the scratch registers:  

- SPEC_PS – a copy of PS (processor status) register; 
- SPEC_RESTART_ADDR – transaction restart address; 
- SPEC_TERMINATE_ADDR – address to jump to in case of execution 

abort; 
- MISC1 – stack pointer. 

 

To use these registers in interrupt handlers we added 2 special return-from-
interrupt instructions: 

- SPEC_RFI_RESTART – return from interrupt to the address stored in 
SPEC_RESTART_ADDR register, SPEC_PS register is copied atomically 
to PS; 

- SPEC_RFI_TERMINATE – the same except that 
SPEC_TERMINATE_ADDR register is used as return address. 

2.3 Memory Mat and Crossbar 
A memory mat is the basic unit of storage in the Smart Memories system. In 
addition to storing bits of information, it is also capable of performing very simple 
bit manipulation operations on some of the stored bits. Depending on the 
configuration, a memory mat can be used as simple local storage, a hardware 
FIFO, or as part of a cache for storing either tag or data. Each Tile has 16 
memory mats which are connected to processors and outside world by a 
crossbar interconnect. 

This section describes the internal architecture and operations of the memory 
mat. It also describes how memory mats are aggregated and used to implement 
more sophisticated storage structures, such as normal or transactional caches. 
The operations of the crossbar and inter-mat communication network (IMCN), 
which exchanges control information between different mats when implementing 
composite storage structures are also explained in this section. 
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2.3.1 Memory mat organization 
Figure 10 shows the internal architecture of memory mat at a high level. Major 
blocks and the flow of data and address information are shown. Each block is 
capable of performing a certain set of operations, which are described in the 
more detail in the following sections. 

 

Figure 10 Major Blocks of the Memory Mat 

2.3.2 Data Array 
Data array (or data core) is shown in Figure 11. It has 1024 entries of 32-bit 
words and is capable of doing read, write and compare operations on the 
accessed word. There is a 4-bit mask input into the array that allows each byte 
within the 32-word to be written independently. In order to do comparison 
operations, the array is equipped with a 32-bit comparator, which compares 
contents of the word with the information provided on the Data In input and gives 
out a Data Match signal. This data match signal is sent out to the processors 
over the crossbar as well as passed to control array logic. 
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Figure 11 Data array. Solid lines are mat input/output signals while dashed lines 
are internal control signals 

In addition to the Address and Data In, data array receives a 3-bit Data Opcode 
which dictates what operation should be performed on the addressed word. 
Furthermore, write operations in the data array can be “Guarded” or 
“Conditional”. Such operations are particularly useful when implementing caches 
for example: the data storage can discard cache write operation if tag storage 
repots a cache miss after tag comparison. For performing such operations, data 
array receives two additional control bits, Guard and Condition, and can decide 
to discard a write operation if either of the Guard or Condition signals is not 
active. How the Guard and Condition signals are generated is discussed later in 
this section. Table 2 lists all operations of the data array. 

 

Data Opcode Operation 

3’h0 – Nop Array is idle, not doing anything 

3’h1 – Unused Equivalent to Nop 

3’h2 – Read Addressed word is read 

3’h3 – Compare Addressed word is read and compared with 
Data In 

3’h4 – (Guarded) 
Write 

Addressed word is written, only if Guard 
signal is active 
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3’h5 – (Guarded) 
Conditional Write 

Address word is written, only if Guard and 
Condition signal are both active 

3’h6 – 
Unguarded Write 

Addressed word is written 

3’h7 – 
Unguarded 
Conditional Write 

Addressed word is written if Condition signal 
is active 

Table 2 Operations in data array 

 

2.3.3 Control Array 
Control array (or control core) is a 1024 entry 6-bit array, where every entry 
corresponds to an entry in the data array (Figure 12). These 6-bits are called 
meta-data bits or control bits associated with each 32-bit word. Control array is 
dual-ported: it can do a read and a write operation in the same cycle. This allows 
the control array to do atomic read-modify-write operation on the control bits. The 
read address is always generated from the main address input of the mat. The 
write address can either be derived from main address input or internally 
generated when doing read-modify-write operations. An internal forwarding logic 
bypasses write values to read port if subsequent read operation goes to the 
address that was written previous cycle. 
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Figure 12 Control array. Solid lines are mat input/output signals while dashed 
lines are internal signals generated inside mat 

Control array is accessed along with the data array and is capable of doing the 
same operations as data array: read, write and compare. Furthermore, it can do 
read-modify-write and compare-modify-write operations by writing back new 
values for the control bits supplied by an internal PLA logic. It receives the same 
Guard and Condition signals as data array and has different flavors of write 
operations. For compare operations, control array compares the contents of the 
accessed entry with the Control In input. A Total Match signal is generated as 
result. There is a 7-bit mask which indicates which control bits participate in the 
compare operation and which control bits are ignored. MSB of the mask signal 
indicates whether the result of the comparison in data array (Data Match) should 
participate in generating the Total Match signal. 

Three bits of the control array (bits 0-2) are accessible by column-wise gang 
operations: a whole column can be set to one or zero in a single-cycle operation. 
Also, one column of the array (bit 2) is capable of doing conditional gang write 
operation: Bit 2 in each entry of the array can be written with one or zero, given 
that bit 1 of the same entry is set to one. These operations are mainly used when 
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implementing transactional caches: all transactional modifications can be flushed 
away in a single cycle. 

Control array operations are dictated by a 4-bit Control Opcode input. Table 3 
lists all the operations on the control array. 

Control Opcode Operation Example Usage 

4’h0 – Nop Array is idle, not doing anything  

4’h1 – Unused Same as Nop  

4’h2 – Unguarded 
Read-Modify-
Write 

Control bits are read and new values 
are written back the next cycle 

Cache line eviction 

4’h3 – (Guarded) 
Compare-Modify-
Write 

Control bits are read and compared 
with Control In. New values are 
written back only if Guard signal is 
active. 

Change cache line 
state to Modified in 
case of cache 
writes 

4’h4 – Read Control bits are read and sent out on 
Control Out 

Reading cache line 
state 

4’h5 – Compare Control bits are read and compared 
with Control In 

Checking cache 
line state (Valid, 
etc.) 

4’h6 – (Guarded) 
Read-Modify-
Write 

Control bits are read and supplied 
on Control Out. New values are 
written back only if Guard signal is 
active 

Coherence 
operations 
(invalidate, 
degrade) 

4’h7 – (Guarded) 
Conditional Read-
Modify-Write 

Control bits are read and sent out. 
New values are written if both Guard 
and Condition signals are active 

 

4’h8 – (Guarded) 
Write 

If Guard signal is active, control bits 
are written with the Control In value 

 

4’h9 – (Guarded) 
Conditional Write 

If both Guard and Condition signals 
are active, control bits are written 
with the Control In value 

 

4’hA – Unguarded 
Write 

Control bits are written by the value 
of Control In 

Updating cache 
line state 
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4’hB – Unused Same as Nop  

4’hC – Gang 
Write 

If Address 0, 1 or 2 is one, column 0, 
1 or 2 of control array receives value 
of Control In 0, 1 or 2. 

Cache flush 

4’hD – 
Conditional Gang 
Write 

If Address 2 is one, bit 2 of each 
entry receives value of Control In 2 
Only if bit 1 in the same entry is one  

Flush of 
speculatively 
modified lines 

4’hE – 
Conditional 
Unguarded Write 

Writes bits in the control array only if 
Condition signal is active 

 

4’hF – Unused Same as Nop  

Table 3 Operations in control array 

 

2.3.4 PLA block 
A small PLA block allows mat to perform read-modify-write operations on the 
control bits associated with every data word. The PLA operates on the control 
bits read from control array and generates new values, which are written back to 
control array the next cycle. Forwarding logic takes care of the case when the 
same entry in the array is immediately read after being written, hence the read-
modify-write operations takes place atomically from the user’s point of view. 

PLA logic is controlled by a 4 bit PLA Opcode signal which is supplied to the mat. 
This opcode dictates the logic function that needs to be performed on the control 
bits. In general, PLA logic receives the following inputs to operate upon: 

Control [5:0]:  six control bits from control array 
Data match: result of the comparison operation in the data array 
Total match: logical AND of Data match with Control match, which is result of 

comparison operation in the control array 
IMCN [1:0]: Inter-Mat Communication Network mat inputs (explained later) 
PLA Opcode [3:0]: mat inputs 
Byte Write: generated based on the write byte mask in the data array, indicates 
whether the write operation writes the whole word or not 

 

2.3.5 Pointer logic 
Each memory mat is equipped with a pair of pointers which allows it to be used 
as a hardware FIFO (Figure 13). An external output, FIFO select, dictates 
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whether mat should use the externally supplied “Address In” signal or use 
internal pointers to generated address for data and control arrays. These pointers 
are automatically incremented after each access: read and compare operations 
increment head pointer, while write operations increment tail pointer. Increment 
of the tail pointer can be guarded the same way that a write operation is guarded: 
if the guard signal is not active, the pointer will not be incremented. An example 
usage of guarded increment is described later in this section, when explaining 
how a transactional cache is configured. 

The depth of the FIFO also can be controlled via a configuration register. 
Whenever size of FIFO grows to the value of the depth register and user tries to 
write the FIFO, write operation is ignored and a FIFO Error output signal is 
asserted. The same situation happens if user tries to read an empty FIFO. Also, 
there is a threshold register which its value can be set by user. When the size of 
the FIFO grows to this threshold, a separate FIFO Full output signal is asserted 
to let the user know that FIFO is almost full.  

 

Figure 13  Pointer logic. Solid lines are main inputs/outputs of the mat, while 
dashed lines are internal signals 

2.3.6 Guard and Condition Logic 
As mentioned before, write operations in the data array and control array can be 
controlled by any combination of a Guard and Condition signals. This allows a 
mat to ignore write operations if necessary. The best example is when a 
combination of memory mats is used to implement a cache: When a write 
operation is issued to the cache, it should be ignored if cache line is not present 
in the cache or if it is in the correct state (e.g. it is in Invalid or Shared state). In 
this case, the hit/miss indication acts as the Guard signal, which orders the mat 
to discard the write operation. Guard signal can be configured to be any function 
of the IMCN_in inputs, while Condition can be any of the 6 control bits within the 
control array. An example usage of the Condition bit is when performing a 
synchronized store operation, which sets a Full/Empty bit after writing the data 
word. In this case, one of the control bit is used to implement the Full/Empty bit; if 
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the Full/Empty bit is already set (data word is full), the write operation should be 
discarded. 

2.3.7 Crossbar and Inter-Mat Communication Network (IMCN) 
There are 16 memory mats within each Tile which are accessible by the two 
processors and from the outside of the Tile. Tile crossbar is the entity that 
connects the two processors and outside interface to the memory mats. In 
addition, memory mats have their own inter-mat communication network to 
exchange control information when implementing composite storage structures 
like caches. 

Crossbar 
The Tile crossbar (Figure 14) connects processors’ load/store unit and protocol 
controller to memory mats. It performs the arbitration between different sources 
when accessing mats and issued grants. It is also capable of broadcasting 
operations to multiple mats, where an access is simultaneously sent to more than 
one memory mat, if necessary.  

 

Figure 14 Tile crossbar 

 

Each part of the LSU (processor 0 and processor 1) has two independent ports 
to the crossbar, one used for data accesses and the other for instruction 
accesses. When accessing a mat LSU provides the mat with all necessary 
signals: Address, Data In, Control In, Mask, FIFO select, Data Opcode, Control 
Opcode and PLA Opcode. We call the combination of these signals a “mat 
access”. 
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Each LSU port to the crossbar can access up to three independent set of mats: 
tag mat(s), data mat(s) and FIFO mat. Any combination of these mat accesses 
might be generated as result of the processor’s instruction or data access. The 
data mat(s) contain actual data; they might be local scratchpads or mats that 
store the data portion of cache line in a cache configuration. The tag mat(s) 
contain the tag portion of the cache lines when mats are used to implement 
caches. The FIFO access is used in TCC mode only and is explained later. Each 
one of the data, tag and FIFO accesses have a 16-bit mat mask, which tells the 
crossbar which mats the access should be sent to. 

The crossbar also acts as an arbiter, which resolves conflicts between the 
accesses from the two processors and protocol controller. The protocol controller 
is given priority at all times and its accesses always go through without being 
stalled. Since protocol controller might access memory mats in all of the four 
Tiles simultaneously, having higher priority enables it to statically schedule its 
accesses to memory mats and simplifies its internal pipelines. A fair round-robin 
arbitration mechanism resolves conflicts between the two processors and stalls 
the losing processor. 

As shown in Figure 14, protocol controller has two independent ports for 
accessing the memory mats within the Tile. Like processor ports, each of these 
ports can broadcast an access to any number of memory mats independently. 
Note that crossbar assumes that these two ports never try to access the same 
memory mats at the same time, therefore there is no arbitration mechanism 
implemented between these two ports. 

Inter-Mat Communication Network (IMCN) 
Memory mats can be used to implement composite storage elements such as 
caches with different parameters such as size, ways and line size. In such 
configurations, some of the mats are used to store tag portion of the cache line 
as well as cache line state information, while other mats are used to store the 
data. In order for such configuration to work correctly, some control information 
needs to be exchanged between tag mats and data mats. For example, the 
hit/miss information should to be transmitted from tag mats to data mats, such 
that the data mats can ignore the operation if there was not a hit in that particular 
cache way. IMCN is a small network that allows mats to exchange such 
information efficiently. 

Each mat supplies two bits to inter-mat communication network (IMCN_out [1:0]) 
and receives two bits from it (IMCN_in [1:0]). A configuration register within the 
mat dictates what values mat sends out on each of the IMCN outputs 
independently, which can be any of the following signals or their logical inverse: 

Any of the control bits  
Data Match (from data array) 
Total Match  
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A set of configuration registers within the IMCN decides what values are supplied 
to memory mats on their IMCN_in inputs. Figure 15 shows the IMCN logic for 
generating these inputs: For each bit of the IMCN_in per memory mat, a mask 
register decides which mats participate in generating that input. Then a logical 
OR operation is performed on all the participating signals and result is sent to the 
receiving memory mat. This way, each mat can receive control information from 
any other mat or combination of mats on any of its IMCN_in inputs. 

 

 

Figure 15 IMCN_in signal generation for each memory mat 

2.3.8 Examples 
In this subsection, configuration and operation of memory mats are described by 
two examples. The first example shows how to use a set of memory mats to 
implement a 16KB, 2-way set associative cache, while second example shows 
the configuration and operation of a transactional cache which is capable of 
tracking and storing speculative modifications. 

A 2-way set associative cache  
Figure 16 shows how a 2-way set associative cache is implemented using six 
memory mats. Each way of the cache consists of two mats storing the data part 
of the cache line and one mat storing the tag portion as well as cache line state 
information. Hit/miss information is sent across the IMCN from each tag mat to 
the corresponding data mats. Whenever LSU issues a cache operation, crossbar 
routes the tag access to both tag mats and data access to appropriate data mats 
(depending on the offset within the cache line, data access might go to Data 0 or 
Data 1). 
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Figure 16 A sample 2-way set associative cache configuration 

Meta-data bits in the tag mats are used to encode the state of the cache line 
according to the coherence protocol as well as information necessary for 
implementing desired line replacement policy. Assuming a simple MESI 
coherence protocol and Not-Most-Recently-Used replacement policy, the 
encoding cache line state is as follows: 

Bit 0: unused 
Bit 1: Shared/Exclusive 
Bit 2: Valid/Invalid 
Bit3: Modified 
Bit4: MRU (Most Recently Used) 
Bit 5: Reserved (Indicates a pending refill on this cache line) 

All tag and data mats in the cache are accessed simultaneously by LSU. Tag 
mats perform a compare operation on both data and control arrays: Data In 
signal brings in the tag portion of the cache line address, while Control In brings 
the desired line state for comparison. The Mask signal is used to discard 
unwanted bits of the control array, for example when doing a cache read, value 
of the S/E or MRU bits is not important. The result of the comparison is reported 
by each way on its Total Match output and is returned to the LSU by crossbar. 
The Total Match output of each tag mat is also transmitted to its corresponding 
data mats over the IMCN so that data mats could ignore the operation if their 
associated tag mat did not have a hit. PLA operation within the tag mat updates 
the control bits accordingly: for example, in case of a cache write, Modified bit is 
turned on whenever there is a cache hit.  
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Data array in data mats receives a read or guarded write operation (depending 
on type of cache access, Load or Store) from crossbar. In case of read, each 
data mat returns the contents of the addressed location back to crossbar and 
crossbar selects the appropriate word depending on the hit signal from each tag 
mat. In case of write operations, the data array receives a guarded write 
operation and the Guard signal is configured to be the hit/miss signal received on 
the IMCN from the associated tag mat, hence if the corresponding tag mat does 
not report a hit the write operation is discarded and contents remain untouched. 

The exact configuration of the cache (such as which mats are used for tag 
storage and which mats are used for data storage, number of ways in the cache, 
etc.) as well as the details of tag and data accesses (such as Data Opcode, 
Control Opcode, PLA Opcode, Mask, etc.) are stored in the configuration 
registers inside the Load/Store Unit and are discussed in detail in the next 
section. 

Transactional cache 
A transactional cache in the Smart Memories stores the speculative writes issued 
by the transaction. Data of the speculative write is stored in the data mats of the 
cache while a separate mat is used to store the address of all speculative writes. 
This list of addresses is then used by the protocol controller to commit all such 
modifications to main memory after transaction finishes. Figure 17 shows an 
example of a two way transactional cache. 

The mapping of control bits for representing cache line state and line 
replacement information is as follows: 

Bit 0: SR (Speculatively Read – indicates that the line has been read by the 
transaction) 

Bit 1:  SM (Speculatively Modified – indicates that the line has been speculatively 
modified by the transaction) 

Bit 2: Valid/Invalid 
Bit 3: Modified 
Bit 4: MRU (Most Recently Used) 
Bit 5: Reserved 

In addition, the control bits in the data mats are also used to mark each word 
independently as speculatively read or written: 

Bit 0: SR (Speculatively Read) 
Bit 1: SM (Speculatively Modified) 
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Figure 17  A transactional cache 

The basics of the operations for the transactional cache are essentially the same 
as normal cache; the only difference is in that an additional memory mat is used 
in FIFO mode to store all the addresses written by the transaction. Whenever 
LSU issues a cache write operation, it also sends a FIFO access to the Address 
FIFO along with the tag and data accesses. Address FIFO receives the address 
of the word on its Data In input and writes it into the data array. The IMCN and 
Guard logic are configured such that the FIFO accepts and writes the address 
only if there is a cache hit and the word is not already marked as speculatively 
modified. This way, a word might be written multiple times during the transaction 
execution, but its address is placed only once in the Address FIFO. 

In order to implement the guard logic, each tag mat sends the inverse (Not) of its 
Total Match signal on the IMCN_out, while each data mat sends out its SM bit. A 
logical OR operation is performed in the IMCN and FIFO mat receives (~Total 
Match | SM) from each way of the cache on one of its IMCN_in inputs. The 
Guard signal inside the FIFO mat is then configured according to the following 
table: 

 

Guard  IMCN_in[1] IMCN_in[0] 

1 0 0 

 

 

Address 
FIFO

 
 

 

Tag 

 

 

Address 
FIFO

 

 

Data 0 

 

 

Address 
FIFO

 

Inter-mat Communication

1 2 3

 

Data 1 

1) Total Match sent out by tag mats to the corresponding data mats  
2) ~Total Match sent out to be ORed with SM bits from the data mat 

of the same way and then sent to FIFO 
3) SM bits sent out from data mats to be ORed with ~Total Match 

from the same way and sent to FIFO
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1 0 1 

1 1 0 

Table 4 Guard function for the Address FIFO 

After the transaction ends successfully, protocol controller uses the contents of 
the Address FIFO to send all transaction’s modifications to main memory and 
hence commit its state. SR and SM bits in both tag and data mats are flash-
cleared using column-wise gang operations and a new transaction can start.  

If a transaction needs to be restarted, all its speculative modifications have to be 
discarded. This is simply performed using conditional gang write operation in the 
control array: Valid bit in the tag mats is conditionally flash-cleared if SM bit is 
set, which invalidates all speculative modifications inside the cache. After that, 
SM and SR bits in both data and tag mats are flash-cleared and cache will be 
ready for transaction to restart. 

2.4 Load/Store Unit (LSU) 
The Load/Store Unit (LSU) connects processor cores to the Tile crossbar and 
provides flexibility in performing memory operations. It also has an interface to 
communicate with the protocol controller sitting outside the Tile. The LSU keeps 
details of the Tile’s memory configuration  as well as the exact behavior of each 
memory operation issued by the processor  in a number of configuration 
registers. This section describes the major functions of the LSU, provides an 
overview of its configuration capabilities, and gives details of its communication 
with the protocol controller. 

2.4.1 Interfaces 
Figure 18 shows the interfaces of the LSU. On the bottom there are processor 
ports: instruction, data and TIE. The TIE port is used for issuing special memory 
operations which are added to processor’s instruction set using TIE language. 
Data and TIE ports of the processor are 32 bits wide, while the instruction port is 
64 bits wide. Each processor has its own separate ports to the LSU. On the top 
side, LSU connects to the crossbar ports and on the left to the protocol controller. 
Note that the two processors share the single interface to the protocol controller. 
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Figure 18 Interfaces to the Load/Store Unit 

 

Processors are configured such that they always activate only one of their data 
or TIE ports in a cycle. However, accesses from the instruction port can occur 
simultaneously with a data or TIE port access. As indicated in the figure, the  
LSU also provides a mechanism to stall processors upon events such as cache 
misses or direct accesses to non-local memories (e.g. in other Tiles or Quads), 
which have to go through the protocol controller. 

2.4.2 Tile memory configuration 
As mentioned in the previous section, memory mats in the Tile can be configured 
differently depending on the memory model.  There are two structures in the LSU 
that keep track of this information: the cache configuration registers and the 
segment table. The two processors in the Tile each have their own set. 

A processor’s instruction and data caches are specified by a collection of five 
registers inside the LSU: one register describes the main parameters of the 
cache, while four registers store information of up to four cache ways. The details 
of these registers are described below: 

i/d_cache_way0-3_info 
Bit [0]: way enable 
Bit [4:1]: tag mat number 
Bit [8:5]: starting data mat number 
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i/d_cache_info 
Bit [1:0]: unused 
Bit [3:2]: number of data mats in each way 
Bit [5:4]: cache line size 
Bit [7:6]: number of rows per cache line 
Bit [11:8]: FIFO mat ID (for TCC caches only) 
 
Each way of the cache, as described by the examples in the previous section, 
consists of a tag mat and a number of data mats. Each way info register 
determines whether a specific way is enabled in the cache and which mats serve 
as its tag and data storage. When a cache way has more than one data mat, only 
the ID of the first data mat is stored in the register; other data mats simply follow 
the starting mat sequentially.  The number of data mats in each cache way is 
stored in bits 3-2 of the cache info registers. 

Size of the cache line can be 16, 32, 64 or 128 bytes and is stored in bits 5-4 of 
the cache info register. Larger cache lines span multiple data mat rows, so the 
number of rows per cache line is specified separately. For example, a cache with 
two data mats in each way and a line size of 16 bytes will use two rows of the 
mats per line, as shown in Figure 19. Thus, each index of the tag mat is 
associated with two different indices of the data mats and hence the LSU 
calculates tag mat index and data mat index separately. 

 

 

 

Figure 19 Association of tag mat indices with data mat 

In case of TCC caches, bits [11:8] of the cache info register specify the mat 
which is used as the Address FIFO. 

2.4.3 Memory map and address translation 
Figure 20 shows the virtual and physical address spaces of the Smart Memories 
system. Both address spaces are 4GB and are divided into 512MB segments. 
Processors issue requests in the virtual space, which are then translated into 
physical addresses for use both inside and outside of the Tile. 
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The virtual address space is divided to three distinct sections: the first four 
segments, (0GB-1GB) are not used at all; processors never generate any 
memory accesses to this region. Segments 4-7 (1GB-2GB) are used by the 
instruction port to access code. Remaining segments (2GB-4GB) are used for 
accessing data. The TIE port only issues operations to the data address space, 
except for instruction pre-fetch (IPF) and instruction cache control (IHI, III) 
operations which are issued to instruction address space. 

Physical address space is divided into four distinct sections: segments 0 and 1 
are considered unused and any access to these segments will generate an 
exception for the processors. Segment 2 contains all configuration 
registers/memories within the system. Segment 3 maps all the local memories in 
all the Tiles/Quads. Segments 4-15 are mapped to off-chip, main memory.  

 

Figure 20 Virtual and physical address spaces 

Translation from virtual address space to physical address space is carried out 
by a 12-entry segment table. This table also provides a basic memory protection 
mechanism and throws exceptions to processors in case of address translation 
error or violation of the protection. Segments can be mapped either to off-chip 
memory or to on-chip memory in any of the Tiles/Quads (memory mats). When 
mapping a segment to on-chip memory, the actual size of the segment is 
restricted by the segment table, since the available on-chip memory is much less 
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than the default segment size (512MB). Segment table also indicates whether a 
segment is cached or not. For accesses that go to cached segments, the 
translated address is used to access the instruction or data caches. Note that the 
system does not allow caching of any segment that is mapped to on-chip 
memory; only segments mapped to off-chip memory can be cached. Also no 
segment is allowed to be mapped to configuration space. This space is solely 
accessed by special memory operations (RawLoad/RawStore) issued by the TIE 
port, which ignore the segment table and do not perform any translation. Figure 
21 illustrates a segment table entry; the description for each field is as follows: 

R: Read permission. If the bit is not set, read access to this segment will 
generate an exception. 

W: Write permission. If the bit is not set, write accesses to this segment will 
generate and exception. 

OT: On-Tile. Forces the access to go to on-Tile memory mats (ignores the bits of 
address that indicate Quad ID and Tile ID). Used for un-cached accesses 
only. 

C: Cached. Indicates that the segment is cached and therefore access should go 
to a cache structure. 

Re-map: Used for cached or off-Tile addresses. The upper four bits of the virtual 
address (bits 31-28) are replaced with these bits to produce physical 
address.  

Base: Used when accessing on-chip memories only. Provides the base mat ID 
where segment starts. 

Size: Used when accessing on-chip memories only. Size of the segment in 
number of mats. If the address exceeds segment boundary an exception 
is thrown to the issuing processor. 

 

Figure 21  A segment table entry 

Figure 22 illustrates the breakdown of the address bits when accessing on-chip 
segments. The re-map value in the segment table entry should be 3 in order to 
map the virtual address to on-chip memory. Quad ID, Tile ID and Mat ID uniquely 
identify the accessed memory mat. These values are computed by adding the 12 
bits of the Base field to bits of 23-12 of virtual address. The mat index is passed 
to the memory mat as its address input. 
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Figure 22 Breakdown of address bits for accessing on-chip memories 

In Error! Reference source not found. allocation of the configuration space 
(physical segment 2) to different modules in the system is shown. The 
configuration space covers configuration registers within memory mats, Tile LSU, 
crossbar and IMCN, protocol controllers and memory controllers. 

2.4.4 Access translation 
Instruction, data, and TIE ports of the processor issue read and write accesses to 
the LSU. These accesses must be translated into the appropriate mat opcode 
and control signals. Translation takes place according to the following criteria: 

Access port (Instruction, Data or TIE) 
TIE opcode (for TIE port accesses) or Read/Write signal (for instruction and data 

accesses) 
Cached/Un-cached access (extracted from segment table) 
 
As mentioned previously, for each instruction, data or TIE port operation issued 
by processors, up to three different sets of mat accesses can be generated: tag 
access, data access and FIFO access. Figure 24 shows the translation logic for 
processor’s TIE port. Translation logic for processor’s instruction and data port is 
the same; the only difference is that instead of the TIE opcode, a read/write 
signal is passed to the translation logic. 
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Figure 23 Allocation of configuration address space 
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Figure 24 Access translation for the TIE port 

 

Each mat access is comprised of the following set of signals: 

Address: identifies the entry which should be accessed in the mat. 
Data opcode: specifies data array operation. 
Control opcode: specifies control array operation. 
PLA opcode: specifies logic function of the PLA. 
FIFO select: indicates whether mat is used as a FIFO (ignore the Address input 

and use internal pointers). 
Data In: data value that is supplied to data array. It can be a write data for data 

mats, or tag values for tag mats (to do tag compare). 
Control In: value of the control bits; for tag mats, it is the desired cache line state 

(Valid, Exclusive, etc). If the line is not in the desired state a cache miss 
will be reported. 

Mask: For tag mats it indicates the control bits used in tag comparison. For data 
mats it is the byte mask used for performing the write in the data array. 

 
FIFO access is generated only in the transactional mode, when mats are 
configured as transactional cache. Tag access is generated only if the address 
goes to a cached segment. Data access is always generated regardless of 
whether the operation is cached or un-cached. The only exception is cache 
control instructions issued by the TIE port (DHI, DHWBI, DHWB, DII, DIWBI, and 
DIWB): They only generate the tag access and no data or FIFO accesses. 

A set of configuration registers inside the LSU convert the processors memory 
operations into appropriate set of mat signals. Each processor has its own set of 
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registers for doing such translation. These registers are loaded with the default 
values upon reset, but can be written later to change the way in which a specific 
memory operation behaves. They usually are changed when switching to a 
different operational mode, for example switching to transactional mode from 
normal shared memory mode. 

2.4.5 Communication with protocol controller 
The Load/Store Unit is also responsible for communicating with the shared 
protocol controller located outside the Tile. The LSU uses the protocol controller 
to complete memory operations such as refilling caches or directly accessing a 
memory location outside of the Tile (in other Tiles, other Quads, or even in off-
chip memory). Since there is only a single communication channel between the 
LSU and protocol controller, requests from instruction and data ports of the two 
processors have to go through an arbitration phase. The arbitration is done in 
round-robin fashion. Each request is tagged with a four bit sender ID signal which 
indicates the originating Tile ID, processor ID and port ID of the request (TIE port 
is considered as part of the data port for this purpose). 

A small communication queue stores the requests from each port/processor to 
the protocol controller. After arbitration between the four queues, the winning 
request is sent to protocol controller, as shown in Figure 25. Protocol controller 
explicitly acknowledges the request after receiving and storing it locally. It is only 
after receiving the acknowledge signal that the LSU removes the request from its 
queue and moves to the next request. 

 

 

Figure 25 Communication queues to protocol controller 

 

Table 5 lists all the communication messages between the LSU and protocol 
controller. Most of these require a reply back to LSU. When replying, protocol 
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controller sends back a four bit Target ID signal indicating the processor and 
port. 

I
D 

Message Type Needs 
Reply? 

Description 

0 Off-Tile access Yes Direct access to a memory outside 
Tile 

1 Cache miss Yes Cache miss 

2 Upgrade miss Yes Upgrade miss (need ownership only) 

3 Sync miss (un-
cached) 

Yes Synchronization miss, un-cached 
address 

4 Wakeup (un-cached) No Wakeup notification, un-cached 
address 

5 Wake up (cached) No Wakeup notification, cached address 

6 Sync miss (cached) Yes Synchronization miss, cached 
address 

7 TCC FIFO full Yes Address FIFO in TCC cache is full 

8 Hard interrupt clear No Acknowledgement that LSU has 
received hard interrupt 

9 Cache control Yes Cache control operation (DHI, 
DHWB, DHWBI, DII, DIWB, DIWBI, 
IHI, III) 

1
0 

Pre-fetch miss Yes Cache miss for a pre-fetch operation 

Table 5 Messages between LSU and protocol controller 

                                                    Page 49 



2.5 Reconfigurable Protocol Controller 
The protocol controller (or cache controller) is a shared configurable controller 
placed among the four Tiles within a Quad. It has interfaces both to memory 
mats within each Tile as well as to Tile Load/Store units. It is also equipped with 
a generic network interface to communicate with protocol controllers in other 
Quads or to off-chip memory controllers, and it acts as the gateway of the Quad 
to the rest of the system. The protocol controller provides support for the Tiles by 
moving data in and out of the memory mats and by implementing the desired 
memory access protocol. 

Instead of having dedicated hardware to implement a specific memory protocol, 
the controller implements a set of primitive memory operations and provides a 
flexible means for combining and sequencing them. Handling a memory request 
translates to executing a sequence of primitives specific to a given protocol. This 
section explains the architecture of the protocol controller, describes the set of 
basic memory operations implemented, and shows how they are combined to 
implement a desired memory protocol.  

2.5.1 Architecture 
As mentioned, the controller executes a set of basic memory operations. These 
operations are divided into four main categories, as described below: 

Data movements: The protocol controller transfers data between any two mats 
regardless of their location. It also sends and receives data over the 
generic network interface to other Quads or to main memory controllers. 

State updates: When implementing a memory protocol such as coherence, the 
state information associated with the data needs to be read and updated 
according to the protocol rules. Since protocol controller has access to all 
four Tiles, it is also responsible for reading state information, using this 
information to decide how to proceed with the memory request and if 
necessary, updating the state according to the specified memory protocol. 

Tracking and serialization: When implementing some memory protocols such as 
cache coherence, memory requests issued to same addresses need to be 
serialized to preserve correctness. Serialization naturally belongs in the 
protocol controller because all memory requests go through it. In addition, 
the protocol controller keeps tracking information about all outstanding 
memory requests from all processors.  

Communication: The protocol controller has a set of interfaces to communicate 
with Tile processors (via LSU) and other Quads and memory controllers in 
the system. 

 

In addition to these basic operations, there are a few peripherals inside the 
controller which are used for special operations: an interrupt unit is dedicated to 
assert interrupt requests for all Tile processors and to implement interrupt state 
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machines. A configuration block provides a configuration interface for the 
controller such that all its internal configuration registers and memories can be 
accessed by an outside entity such as JTAG controller. There are also a set of 
eight DMA channels which can generate memory transfer requests such as 
strided/indexed gather/scatter operations.  

 

 

Figure 26 High level architecture of protocol controller 

 

Figure 26 displays the high-level architecture of the protocol controller. In light 
gray are blocks that form the main execution core of the controller: tracking unit, 
state update unit and data movement unit. In dark gray are the state and data 
storage used by these units. These main execution units form a pipeline: they 
accept requests for performing operations from one another or from interfaces, 
execute the desired operation and pass the results to the next unit.  

Internal operations of the units are controlled by a horizontal microcode which 
can be altered to change the behavior of the block in response to a request.  The 
details about the internal organization and control of each unit as well as their 
functionality are discussed in following subsections. 
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2.5.2 Request tracking and serialization (T-Unit) 
The Tracking Unit acts as the entry port to the execution core; it receives all 
request/reply messages from processors, network interface and internal DMA 
channels. For each request, an entry in the appropriate tracking structure is 
assigned and the request information is stored, after which it is passed to the 
next unit. 

There are two separate tracking data structures managed by the tracking unit: 
Miss Status Holding Registers (MSHR), are used to store processor cache miss 
information as well as coherence requests from memory controllers. MSHR has 
an associative lookup port which allows the tracking unit to serialize new cache 
misses against already outstanding ones and enables optimizations such as 
request merging. Un-cached request Status Holding Registers (USHR) are 
separate but similar structures used to store information about a processor’s 
direct memory requests for any locations outside of its own Tile. It also keeps 
information about outstanding DMA transfers generated by DMA channels.  

The Tracking Unit consists of two independent parallel paths, one for handling 
cache miss requests and the other one for handling un-cached and 
miscellaneous memory requests (Figure 27). Upon receiving a new cached 
request, the cached request handling section (CT) allocates a new MSHR entry 
and looks up MSHR for other requests to the same memory block that might be 
already outstanding. If no collision with an already outstanding request is 
detected, the request is written into the MSHR during the next pipeline stage. If a 
request cannot be accepted due to collision with an already existing request or 
because MSHR structure is full, the Tracking Units returns a negative 
acknowledgement (Nack) and the sending party must retry the request later. 
When receiving a reply for an outstanding request, CT reads information of the 
original request from MSHR and passes it to next unit to complete processing. 

The un-cached request handling part (UT) acts more or less the same way: it 
allocates USHR entries for incoming requests and writes them into the USHR. 
After receiving replies, it reads request information from the USHR ane passes it 
to the next stage for further processing. If the USHR becomes full, no more 
requests are accepted and Nacks are returned.  Separate round-robin arbiters sit 
in front of  the  CT and UT paths and select  the requests to be accepted by each 
path. 
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Figure 27 Tracking and serialization unit 

2.5.3  State Updates (S-Unit) 
State update unit is in charge of reading and updating the state information 
associated with data, such as cache line state, cache tags, etc. Figure 28 shows 
the internal organization of the S-Unit; it is a four stage pipeline with a small 
output queue sitting at the end. A round robin arbiter at the input selects the next 
request to be accepted by S-Unit. 

 

Figure 28 State update unit 

 

The Access Generator block in the first stage of the pipeline generates all 
necessary signals for accessing Tile memory mats. It can generate two 
independent accesses to memory mats and is capable of accessing either a 
single Tile or all Tiles simultaneously; for example, when handling a cache miss 
request, it can evict a line from the requesting processor’s cache and update the 
state and enforce coherence invariance in other processors’ caches. Generated 
accesses are flopped and sent to memory mats in the next cycle. All the 
necessary control signals for accessing memory mats (e.g. data opcode, control 
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opcode, PLA opcode, mask, etc.) are stored in a microcode memory inside the 
access generator block which is indexed by the type of the input request to S-
Unit, and hence can be adjusted according to desired memory protocol. 

The Decision Block at the last stage of the pipeline receives the value of all 
control bits (meta-data bits) read from memory mats, as well the Total Match and 
Data Match signals and determines the next step in processing the request. For 
example, when serving a cache miss request, if a copy of the line is found in 
another cache, a cache-to-cache transfer request is sent to D-Unit. Or if the 
evicted cache turns out to be modified, a write back request is generated. The 
decision making is performed by feeding the collected state information into a 
TCAM which generates the next step of processing step and identifies the unit 
which should receive the request. The data and mask bits inside TCAM can be 
altered according to any desired protocol. 

A small output queue buffers requests before sending them to other units. The 
size of this buffer is adjusted such that it can always drain the S-Unit pipeline, 
preventing pipeline stalls when a memory mat access is in flight. The arbiter logic 
in front of the pipeline always checks the availability of buffering space in the 
output queue and does not accept new requests if there is not enough free 
entries in the queue. 

2.5.4 Data Movements (D-Unit) 
Figure 29 shows the internals of the Data Movement Unit. Like previous units, an 
arbiter first decides which request should be accepted. The Dispatch Block 
determines which Tiles should be accessed as part of request processing. Four 
data pipes associated with the four Tiles receive requests from their input queues 
and send the results to their output queues. A small finite state machine 
generates replies for processors. 

 

 

                                                    Page 54 



Figure 29 Data Movement Unit 

 

The Dispatch Unit decides which Tiles are involved in a data movement 
operation and sends appropriate memory read/write requests to the appropriate 
data pipes. For example, while a simple cache refill requires writing data to 
memory mats of one Tile, a cache to cache transfer involves reading data from 
the source cache first and writing it to the destination cache with appropriate 
read/write scheduling. The Dispatch Unit uses an internal TCAM to determine the 
type and schedule of appropriate data read/writes for each data pipe and places 
them into data pipe input queues. It also initiates the processor reply FSM when 
needed. 

Figure 30 is a diagram of the data pipe. It has a port to memory mats in the 
associated Tile as well as a read and write port to line buffer. The access 
generator in the first stage generates necessary control signals to read/write 
memory mats and line buffer. Similar to the S-Unit, all necessary signals are 
extracted from microcode memory within the access generator and can be 
changed to implement any type of access. The condition check block at the last 
stage receives the meta-data bits associated with the each of the accessed 
words and can match them with a predefined bit pattern. This allows the data 
pipe to generate the request for the next unit according to the extracted bit 
pattern. For example, when implementing fine grain locks, one of the meta-data 
bits in the control array of the mat is used as a Full/Empty bit. The Data pipe 
decides whether to reply to the processor or to send a synchronization miss 
message to the memory controller depending on the status of the lock bit.  

A shallow output queue ensures that all the operations in the data pipe can be 
drained such that a memory mat access need never be stalled in flight. The 
dispatch unit always checks the availability of the space in the output queues of 
the data pipes which receive memory read/write operations and does not issue 
new operations unless there is enough buffering space in the output queues. 
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Figure 30 Data pipe 

2.5.5 Interfaces 
The Protocol Controller has dedicated interfaces to communicate with processors 
as well as memory controllers and other protocol controllers. A dedicated 
processor interface receives requests from and returns replies to Tile processors 
(LSU) and chooses which request is passed to the execution core. Requests 
from either port of each processor are stored internally inside the processor 
interface and are passed to the T-Unit after winning arbitration (Figure 31). A 
bypass path allows a recently received request to be sent out directly if there is 
no other request waiting in the processor interface.  

 

Figure 31 Processor interface logic 

The network interface consists of separate receiver and transmitter blocks which 
operate independently. Figure 32 shows the network transmitter; a priority queue 
stores the requests for outbound transmissions until the transmitter is ready to 
send. Transmitter logic composes packet headers based on the request type and 
attaches the data to the header. In case of long packets, data is read from the 
line buffer and immediately placed in the outgoing queue. Since the IO clock rate 
can be configured to be slower than the system clock, a rate control queue 
adjusts the rate between the transmitter’s internal operation and output pins. 

The priority queue in front of the transmitter receives  a virtual channel number 
along with the packet request. It considers priorities between virtual channels and 
selects the next request for transmission. The priority queue is sized such that it 
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can absorb and store all active requests within the execution core. This 
guarantees that even when the all the outgoing links are blocked (due to back 
pressure, for example), all active requests in the execution core that need to 
send out a packet can be safely drained into the queue, releasing the execution 
units and preventing deadlock. 

 

Figure 32 Network transmitter 

The network receiver block is shown in Figure 33. There are eight buffers within 
the receiver that each store packet from a virtual channel. A decoder detects the 
virtual channel of the received flit and places it in the appropriate virtual channel 
buffer. After arbitration, header of the selected packet is decoded and a request 
is generated for execution core based on the packet type. In case of long 
packets, data words are first written into the line buffer before the request is 
passed to the execution core.  

 

Figure 33 Network receiver 

2.5.6 Peripherals 
In addition to the execution units and interfaces, the protocol controller has a 
number of DMA channels and a small interrupt unit. Eight DMA channels 
generate memory transfer requests that are entered into the execution core via 
the tracking unit. Channels are capable of generating continuous copy requests, 
as well as strided and indexed gather/scatter operations. Each DMA channel is 
essentially a micro-coded engine which generates requests according to the 
loaded microcode. This makes the DMA engine a very flexible request generator 
which can be used by the user. For example, after completion of a transfer, DMA 
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channels are capable of generating interrupt requests for processors who are 
waiting for data movement, or release lock variables on which processors are 
waiting. Another example is the use of DMA channels in transactions: DMA 
channels are used to commit the speculative modifications of the completed 
transaction. They extract addresses from the Address FIFO of the transactional 
cache, read data words from the cache itself and send them to other caches and 
to main memory. 

A small interrupt unit connects the protocol controller to the interrupt interface of 
all processors. Writing into eight special registers inside this unit will generate 
interrupts for the corresponding processors. In addition, this interrupt unit 
implements a small state machine for handling a special type of interrupt called a 
“hard” interrupt. When a hard interrupt is issued it forces the receiving processor 
to come out of data access stall immediately2  Since processors might be stalled 
on synchronization accesses (sync misses), a hard interrupt also has to kill any 
such outstanding operations before forcing processor out of stall. The state 
machine inside the interrupt unit sends a cancel request to the execution core, 
which ensures that there are no outstanding synchronization misses from a 
specific request. 

2.5.7 Example: MESI coherence 
This section describes a simple example of implementing a MESI coherence 
protocol inside the Quad. It is assumed that processors within a Tile share both 
instruction and data caches and the system consists of only one Quad. The 
Protocol Controller is responsible for refilling Tile caches and enforcing 
coherence invariance. For this purpose, a set of operations is defined for each 
execution unit and the whole protocol is implemented by composing these 
operations. First, we consider the messages the protocol controller receives from 
other blocks of the system. Table 6 lists all the messages along with their 
description. 

 

Message 
Type 

Source Description 

Read miss Tile Cache miss for a read (non-modifying) 
request 

Write miss Tile Cache miss for a write (modifying) request 

Upgrade Tile Request for cache line ownership 

                                            
2 If processor is stalled for an instruction access, such as an I-cache miss it will wait until the 
access is completed and then will receive the interrupt. 
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miss 

Refill Memory 
Controller

Reply to a cache miss that was sent out 
previously. Brings in the cache line. 

Table 6 Request/Reply messages received by protocol controller 

As mentioned before, all request/replies start processing from the tracking unit 
(T-Unit). Table 7 lists the request types defined for T-Unit along with their 
operation, as well as what type of request is passed to the next unit. 

Type Operation Next 
Unit 

Next Type 

CT-Read 
miss 

- Check for collision with already 
outstanding request 

- Allocate MSHR entry 

- Write request information to 
MSHR 

S-Unit S-Read miss

CT-Write 
miss 

Same as above S-Unit S-Read miss

CT-Upgrade 
miss 

Same as above S-Unit S-Upgrade 
miss 

CT-Refill Read request information from 
MSHR 

D-Unit D-Refill 

Table 7  T-Unit operations 

As the table shows, cache misses are passed to S-Unit which searches other 
Tiles to find copies of the request cache line and take appropriate coherence 
action. Refills are given to D-Unit to write the data into the cache. Table 8 lists 
the operations of the S-Unit. It specifies what type of access is sent to cache of 
the requesting Tile as well as to caches in other Tiles and what operation is sent 
to the next unit based on the state information returned after cache access. 

Probe access searches all the ways of a cache for a cache line and brings back 
the state in which the cache line is found. Degrade access also does the same, 
but uses the mat PLA to change the state of the cache line (if found in the cache) 
to shared state. It returns the old state of the cache line. Invalidate access uses 
PLA to change cache line state to invalid, but otherwise is the same as degrade. 
Evict access reads both data and meta-data bits of an index in a specified cache 
way, and meanwhile uses PLA to set the Reserved bit in the control array. Tag 

                                                    Page 59 



write operation is a plain write to both data and meta-data bits to fill in new tags 
and line state information. 

Since both processors in the Tile share the first level cache, the Protocol 
Controller might receive cache misses from both processors. In such cases, the 
first cache miss brings in the cache line and refills the cache. To avoid refilling 
the cache for the second time, a probe access is issued to inquire the most 
recent state of the cache line. If the line turns out to be in the cache in 
appropriate state, then only the critical word requested by the processor is read 
or written and a reply is sent back to requesting processor. 

Tile Accesses Returned 
State 

Type 

Orig. Other Orig. Other 

Next 
Unit 

Next Type 

S, E, 
M 

- D-Unit D-Critical word 
access 

I S, E, 
M 

D-Unit

S-Unit

D-Cache-to-cache 
transfer 

S-Evict 

S-Read 
miss 

Probe 

 

Degrad
e 

 

I I N-Unit

S-Unit

N-Read miss 

S-Evict 

S, E, 
M 

- D-Unit D-Critical word 
access 

I S, E, 
M 

D-Unit

S-Unit

D-Cache-to-cache 
transfer 

S-Evict 

S-Write 
miss 

Probe Invalida
te 

I I N-Unit

S-Unit

N-Write miss 

S-Evict 

S, E, 
M 

- D-Unit D-Critical word 
access & update tag 

S-Upgrade 
miss 

Probe Invalida
te 

I - N-Unit

S-Unit

N-Write miss 

S-Evict 
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S-Evict Evict - M - D-Unit D-Writeback 

S-Evict Evict - I, S, E - - - 

S-Tag write Tag 
write 

- - - - - 

Table 8 S-Unit operations 

Table 9 lists the D-Unit operations. The tile access column explains what 
accesses are sent to Tile memory mats. In some accesses, only a single word in 
the cache is accessed, while in others the whole cache line is read or written. 
According to type of the request, the dispatch block inside the D-Unit decides 
whether to activate one or more data pipes to complete the data transfer. In case 
of refill and writeback operations, the other end of the transfer is the network 
interface, which will write data to or read data from the line buffer. 

Tile Access Line Buffer  Type 

First Second First Second

Next 
Unit 

Next 
Type 

D-Critical word 
access 

Word 
access 

- - - P-
Unit 

Reply 

D-Critical word 
access & update 
tag 

Word 
access 

- - - S-
Unit 

P-
Unit 

S-Tag 
write 

Reply 

D-Cache to cache 
transfer 

Line 
Read 

Line 
Write 

Write Read S-
Unit 

P-
Unit 

S-Tag 
write 

Reply 

D-Writeback Line 
Read 

- Write - N-
Unit 

N-
Writeback 

D-Refill Line 
Write 

- Read - S-
Unit 

P-
Unit 

S-Tag 
write 

reply 

Table 9 D-Unit operations 
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Figure 34 shows the processing steps for a read miss, when the evicted cache 
line is not modified and a copy of the missing line is found in another Tile. In the 
first step, processor interface receives cache miss request and passes a CT-
Read miss request to the T-Unit. After allocating MSHR and writing request 
information, T-Unit sends S-Read miss request to S-Unit. S-Unit searches the 
Tile caches, ensures that requesting cache is not already refilled (by doing a 
probe access) and issues a transfer request to D-Unit. D-Unit moves cache line 
from source Tile to destination Tile, sends reply to processor and a tag write 
command to S-Unit to write new tags and cache line state in the requesting 
cache.  

 

Figure 34 Processing steps for read miss 

2.6 Communication Network 
Smart Memories Quads are equipped with a generic network interface which 
enables them to communicate with each other and with peripherals such as 
memory controllers. This section explains this network communication in more 
details and provides more details about packet formats, flow control, virtual 
channels and their priorities, as well as the broadcast/multicast capabilities of the 
network. 

2.6.1 Packets and flow control 
In the Smart Memories network packets are divided into smaller sub-blocks 
called flits (flow control digit) where each flit is 78-bit wide. Each packet falls into 
three distinct categories: single-flit, two-flit and multi-flit. Single-flit and two-flit 
packets are considered short packets while any packet which has more than two 
flits is considered a large packet. Hence flits are divided into four different 
categories: Head, Tail, Body and Head_Tail. There is also a Null flit type defined 
which means that no flit is transmitted over the interface. Each flit carries a three 
bit flit type and a three bit virtual channel number in addition to the payload. 
Figure 35 shows the possible formats of the flit payloads. 
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Figure 35 Flit payload formats 

Packet exchange over the network is controlled by an explicit credit-based flow 
control mechanism; after each flit is consumed / switched by the upstream 
network interface, an explicit credit is sent back to the downstream network 
interface. Whenever the available credit is lower than the length of the packet to 
be sent, the packet is stalled and the interface waits for more credits before it is 
able to transmit again. 

Figure 36 and Figure 37 show all the different packet formats exchanged over 
the network. Figure 36 shows the common fields in the packet headers, while 
Figure 37 shows the fields that differ from one packet type to other. These fields 
are described in the following table. 

Field Bits Description 

Broadcast mask 71-69 Used by the network switches / routers. Indicates 
whether and how the packet should be broadcasted 
to more than one destination 

Destination 68-64 Destination address of the packet 

Source 63-59 Source address of the packet 

Message Type 58-54 Type of message 

USHR Index 53-47 USHR entry which contains information of this 
request 

MSHR Index 53-47 MSHR entry which contains information of this 
request 

Quad ID 51-47 ID of the Quad which this request is sent on its 
behalf 
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MC MSHR Index 53-47 Memory Controller MSHR entry which contains 
information of this request 

Opcode 46-41 Memory Opcode (load, store or TIE opcode) 

Miss Type 46-44 Cache miss type (read, write, upgrade) 

Line State 46-45 Cache line state (Invalid, Shared, Exclusive or 
Modified) 

Action 46-44 Coherence action (Read, Read Exclusive, Invalidate)

Byte Mask 40-37 Byte mask for stores, used when doing direct, un-
cached memory accesses 

Size, Line Size 40-44 Size of the data block in the packet, in bytes (used 
for long packets only) 

Wakeup Type 40 Type of wakeup: reader wakeup or writer wakeup 

Wait Bit Adjust 40 Indicates whether there are more waiting processors 
on this synchronization operation 

Is FIFO 39 Indicates whether the access was a remote FIFO 
access  

FIFO Error 38 FIFO Error signal returned by the remote FIFO 

FIFO Full 37 FIFO Full signal returned by the remote FIFO 

Data Flag  43 Indicates that upgrade miss brings new data along 
with ownership 

Requestor 53-32 Tile ID, processor ID and port ID of the requesting 
processor 

I/D 32 Port ID for the request (instruction/data) 

Address 31-0 Address which the request goes to (in case of long 
packets, the address is start address of the block) 

Data 31-0 Write data for write requests, or read data for read 
replies 

 

Table 10 Packet header fields 

                                                    Page 64 



 

Figure 36 Common fields for headers (used by all packets) 

 

Figure 37 Fields that differ from one packet type to other. Bit 0 is where header 
flit ends and the next flit starts. 

2.6.2 Virtual channels 
Smart Memories network supports eight independent virtual channels. Virtual 
channel assignment for different requests/replies over the network can be 
configured within the Quads and memory controllers. Virtual channels support a 
very flexible priority scheme: for each virtual channel, an 8-bit mask indicates 
which other virtual channels can block it. For example, setting this mask to 
8’b0000_0011 for virtual channel two indicates that it can be blocked by virtual 
channels zero and one, or in other words, virtual channels zero and one have 
priority over virtual channel two. Appropriate care is taken such that no channel 
can block itself. 

Table 11 displays the current assignment of request/replies to virtual channels 
and their priorities. Note that there are some unused virtual channels within the 
system. VC0 is reserved for emergency messages. 
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VC Message Types Blocked by 

0 Reserved - 

1 Coherence replies, cache refills, 
writebacks, DMA (Gather/Scatter) 
replies, wake up notifications, Off-
Tile memory accesses, Sync miss 

- 

2 Coherence requests, cache misses, 
DMA (Gather/Scatter) requests, 
reply to off-tile memory accesses 

VC1 

3 Cancel VC1 

4 None - 

5 None - 

6 None - 

7 None - 

Table 11 Virtual channel assignments 

 

The priority masks need to be initialized with appropriate values both in the 
network interfaces of Quads and memory controllers as well as intermediate 
switches and routers. 

2.6.3 Broadcast / Multicast over network 
Smart Memories network provides some basic facilities for broadcasting or 
multicasting packets to multiple receivers. For example, when canceling an 
outstanding synchronization operation, a Quad needs to broadcast the cancel 
message to all memory controllers. To enforce coherence, a memory controller 
needs to send a coherence message to all Quads except the one originating the 
cache miss. The broadcast/multicast features of the network allows network 
interfaces to send out a single request rather than generating separate requests 
for all desired destinations. 

 

Three most significant bits of the packet header are used to specify 
broadcast/multicast. First bit, CCBroadcast, is used by memory controllers and 
indicates that the packet needs to be sent to all Quads. Second bit, 
MCBroadcast, used by Quads and indicates that the message has to be 
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broadcasted to all memory controllers3. The third bit, ExceptDest, makes an 
exception for the node indicated by destination address. For example, if a 
memory controller sets these bits to value 3’b101 with  the destination address 
set to 5’d1, the request is sent to all Quads except Quad 1. If needed, a packet 
can be broadcasted to all Quads and to all memory controllers by setting both 
CCBroadcast and MCBroadcast flags. Note that ExceptDest flag is effective only 
if one of the previous two flags is used. 

2.7 Memory Controller 
The Memory Controller is another configurable controller shared among Quads. 
It acts as the next level of system hierarchy above Quads, and provides access 
to main memory and support for memory protocols. Examples of the latter are 
enforcement of coherence invariance among the Quads and provision of 
transactional memory properties. 

The Memory Controller communicates with Quads and via a generic network 
interface and accesses main memory through a dedicated memory interface. A 
Smart Memories system can be configured to have more than one memory 
controller. In such systems, each memory controller is in charge of a separate 
memory bank and memory addresses are interleaved between banks. 

Since all Quads send requests to a memory controller, it naturally acts as the 
serialization point between them, which is important for implementing memory 
protocols such as coherence. Similar to a Quad’s protocol controller, the Memory 
Controller supports a set of basic operations and implements protocols via 
combinations of these operations.  

2.7.1 Architecture 
Overall architecture of the memory controller is shown in Figure 38. Basic 
operational units are light gray and state storage structures are dark gray. 
Operational units are distinguished by the type of requests that they handle. C-
Req and C-Rep units are dedicated to cache misses and coherence operations. 
The U-Req/Rep unit handles DMA operations and un-cached accesses to off-
chip memory. The Sync Unit stores synchronization misses and replays 
synchronization operations whenever a wake up notification is received. 
Operation of each of these units is described below. 

                                            
3 Quads and memory controllers are distinguished by the MSB of their address: all memory 
controllers have the MSB of their ID set to one, while all Quads have the MSB of their ID set to 
zero. 
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Figure 38 Architecture of memory controller 

2.7.2  C-Req / C-Rep units 
These two units handle cache miss and coherence operations. They basically 
integrate the request tracking and serialization, state monitoring and necessary 
data movements required for handling cache miss operations in one place. In 
general, memory accesses that require a form of coordination between Quads, 
such as cache misses in a cache coherent system or commit of transaction 
modifications in a transactional memory system, are handled by these two units.  

The network interface delivers Quad requests to C-Req unit and Quad replies to 
C-Rep unit. Quad requests start their processing at C-Req unit. Similar to 
protocol controller, each incoming request is first checked against outstanding 
requests and is accepted only if there is no conflict. Outstanding request 
information is stored in the Miss Status Holding Register (MSHR) structure which 
has an associative lookup port to facilitate access based on memory block 
address. If no serialization is required and there is no conflicting request already 
outstanding, an incoming request is accepted by C-Req and is placed in MSHR. 
In case of a collision, a request is placed in the Wait Queue structure and is 
considered again when the colliding request in the MSHR completes. 

When a memory request requires state information from other Quads to be 
collected or the state information in other Quads to be updated, C-Req unit 
commands the network interface to send appropriate requests to other Quads in 
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the system, except the one that sent the original request. For example, in case of 
a cache miss request, caches of other Quads have to be searched to see if there 
is a modified copy of the cache line. Similarly, when committing the speculative 
modifications of a transaction, these modifications have to be broadcast to all 
other running transactions and hence made visible to them. Network interface 
has basic capability of broadcasting or multicasting packets to multiple receivers 
and is discussed in the next section. C-Req unit also communicates with the 
memory interface to initiate memory read/write operations when necessary.  

The C-Rep unit collects replies from Quads and updates the MSHR structure 
accordingly. Replies from Quads might bring back memory blocks (e.g. cache 
lines) and are placed in the line buffers associated with each MSHR entry. After 
the last reply is received and based on the collected state information, C-Rep 
decides how to proceed. In cases where a memory block has to be returned to 
the requesting Quad  (for example when replying to a cache miss), it also 
decides whether to send the memory block received from main memory or the 
one received from other Quads.  

2.7.3  U-Req/Rep unit 
This unit handles direct accesses to main memory. It is capable of performing 
single word read/write operation on the memory (un-cached memory accesses 
from processors) or block read/writes (DMA accesses from DMA channels). It 
has an interface to the Memory Queue structure and places memory read/write 
operations in the queue after it receives them from the network interface. After 
completion of the memory operation, it asks the network interface to sent back 
replies to the Quad that sent the original request. 

2.7.4  Sync unit 
As discussed in the earlier sections, Smart Memories utilizes a fine-grain 
synchronization protocol that allows processors to report unsuccessful 
synchronization attempts to memory controllers, also known as synchronization 
misses. When the state of the synchronization location changes, a wakeup 
notification is sent to memory controller and the failing request is retried on behalf 
of the processor. The Sync Unit is in charge of storing all the synchronization 
misses and attempting replay operations after wakeup notifications are received.  

Information about synchronization misses is stored in the Sync Queue structure. 
Sync Queue is sized such that each processor in the system has its own entry.4 
When a synchronization miss is received, its information is recorded in the Sync 
Queue. When a wakeup notification is received for a specific address, the next 
processor which has an outstanding synchronization miss on that address is 
removed from Sync Queue and a replay request is sent to appropriate Quad to 
replay the synchronization operation.  

                                            
4 Each processor can have at most one synchronization miss outstanding. 
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The Sync Unit also handles Cancel requests received by the network interface. 
Cancel requests attempt to erase a synchronization miss from a specific 
processor if it exists in the Sync Queue. The Sync Unit invalidates the Sync 
Queue entry associated with the processor and sends a Cancel Reply message 
back to the Quad which sent the Cancel request. 

2.7.5  Interfaces 
The Memory Controller is equipped with a generic network interface which 
enables it to communicate with Quads in the system. It also has a generic 
memory interface and memory queue structure to perform read and write 
operations to memory. Network interface of the memory controller is essentially 
the same as the protocol controller network interface, as discussed in a previous 
section. It has separate transmit and receive blocks which are connected to 
input/output pins. It is capable of sending short and long packets and has basic 
broadcast capabilities which are discussed in more detail in the next section. 

Memory interface is a generic 64-bit wide interface to a memory back that is 
operated by Memory Queue structure. When a unit needs to access main 
memory, it places its read/write request into the Memory Queue and the reply is 
returned to the issuing unit after memory operation is complete. Requests inside 
the queue are guaranteed to complete in the order in which they are placed in 
the queue and are never re-ordered with respect to each other. Block read/write 
operations are always broken intro 64-bit wide operations by the issuing units 
and are then placed inside the Memory Queue structure. 
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3 Transactional Coherence and Consistency 
As described in Section 1 parallel programming is complicated and error-prone. 
The goal of the TCC project has been to develop easy-to-use and high-
performance parallel systems using transactional memory (TM) technology. With 
TM, programmers simply declare that code blocks operating on shared data 
should execute as atomic and isolated transactions with respect to all other code. 
Concurrency control is the responsibility of the system. Hence, the focus of the 
TCC project has been on the development of programming models for TM-based 
software development and on the development of TM systems (hardware, 
runtime system, compiler). The basic concepts of transactional memory and TCC 
are described in Section 1.3, the following sections highlight the major extensions 
and accomplishments of the TCC effort.  

3.1 Scalable TCC Architecture 
The basic TCC architecture described in Section 1.3 and [21] provides support 
for transactional execution that performs well for small-scale, bus-based systems 
with 8 to 16 processors. However, given the ever-increasing transistor densities, 
large-scale multiprocessors with more than 16 processors on a single board or 
even a single chip will soon be available. As more processing elements become 
available, programmers should be able to use the same programming model for 
configurations of varying scales. Hence, TM is of long-term interest only if it 
scales to large-scale multiprocessors. 

We have developed the first scalable, non-blocking implementation of TM [46]. 
Using continuous transactions, we can implement a single coherence protocol 
and provide non-blocking synchronization, fault isolation, and a simple to 
understand consistency model. The basis for this work is a directory-based 
implementation of the Transactional Coherence and Consistency (TCC) model 
that defines coherence and consistency in a shared memory system at 
transaction boundaries. Unlike other TM architectures, TCC detects conflict only 
when a transaction is ready to commit in order to guarantee livelock-freedom 
without intervention from user-level contention managers. It is also unique in its 
use of lazy data versioning which allows transactional data into the system 
memory only when a transaction commits. This provides a higher degree of fault 
isolation between common case transactions. To make TCC scalable, we used 
directories to implement three techniques: a) parallel commit with a two-phase 
protocol for concurrent transactions that involve data from separate directories; 
b) write-back commit that communicates addresses, but not data, between nodes 
and directories; c) all address and data communication for commit and conflict 
detection only occurs between processors that may cache shared data.  

The new architecture for TCC hardware is non-blocking and implements 
optimistic concurrency control in scalable hardware using directories. The 
directory implementation reduces commit and conflict detection overheads using 
a two phase commit scheme for parallel commit and writeback caches. The 
directory also acts as a conservative filter that reduces commit and conflict 
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detection traffic across the system. We have demonstrated that the proposed TM 
architecture scales efficiently to 64 processors in a distributed shared-memory 
(DSM) environment for both scientific and commercial workloads. Speedups with 
32 processors range from 11 to 32 and for 64 processors, speedups range from 
16 to 57. Commit overheads and interference between concurrent transactions 
are not significant bottlenecks, less than 5% of execution time on 64 processors. 
The organization and operation of the scalable TCC architecture were presented 
in the 13th International Conference on High Performance Computer Architecture.  

3.2 Virtualizing Transactional Memory Hardware 
For TM to become useful to programmers and achieve widespread acceptance, it 
is important that transactions are not limited to the physical resources of any 
specific hardware implementation. TM systems should guarantee correct 
execution even when transactions exceed scheduling quanta, overflow the 
capacity of hardware caches and physical memory, or include more independent 
nesting levels than what the hardware supports. In other words, TM systems 
should transparently virtualize time, space, and nesting depth. While recent 
application studies have shown that the majority of transactions will be short-lived 
and will execute quickly with reasonable hardware resources, the infrequent 
long-lived transactions with large data sets must also be handled correctly and 
transparently. 

Existing HTM proposals are incomplete with respect to virtualization. None of 
them supports nesting depth virtualization, and most do not allow context 
switches or paging within a transaction (TCC, LTM, LogTM). UTM and VTM 
provide time and space virtualization but require complex hardware and firmware 
to manage overflow data structures in memory and to facilitate safe sharing 
among multiple processors. Since long-lived transactions are not expected to be 
the common case, such a complex and inflexible approach is not optimal.  

In this work, we developed the first comprehensive study of TM virtualization that 
covers all three virtualization aspects: time, space, and nesting depth. We 
proposed eXtended Transactional Memory (XTM), a software-based system that 
builds upon virtual memory to provide complete TM virtualization without complex 
hardware [43]. When a transaction exceeds hardware resources, XTM evicts 
data to virtual memory at the granularity of pages. XTM uses private copies of 
overflowed pages to buffer memory updates until the transaction commits and 
snapshots to detect interference between transactions. On interrupts, XTM first 
attempts to abort a young transaction, swapping out transactional state only 
when unavoidable. We demonstrated that XTM allows transactions to survive 
cache overflows, virtual memory paging, context switches, thread migration, and 
extended nesting depths. 

XTM can be implemented on top of any of the hardware transactional memory 
architectures. The combination is a hybrid TM system that provides the 
performance advantages of a hardware implementation without resource 
limitations. XTM supports transactional execution at page granularity in the same 
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manner that page-based DSM systems provide cache coherence at page 
granularity. Unlike page-based DSM, XTM is a backup mechanism utilized only 
in the uncommon case when hardware resources are exhausted. Hence, the 
overheads of software-based virtualization can be tolerated without a 
performance impact on the common case behavior. Compared to hardware-
based virtualization, XTM provides flexibility of implementation and lower cost. In 
the base design, XTM executes a transaction either fully in hardware (no 
virtualization) or fully in software through page-based virtual memory. Conflicts 
for overflowed transactions are tracked at page granularity. If virtualization is 
frequently invoked, these characteristics can lead to large overheads for 
virtualized transactions. To reduce the performance impact, we also developed 
two enhancements to the base XTM system. XTM-g allows an overflowed 
transaction to store data both in hardware caches and in virtual memory in order 
to reduce the overhead of creating private page copies. Further extension, XTM-
e, allows conflict detection at cache line granularity, even for overflowed data in 
virtual memory, in order to reduce the frequency of rollbacks due to false sharing. 
XTM-g and XTM-e require limited hardware support, which is significantly simpler 
than the support necessary for hardware-based virtualization in VTM or UTM. 
XTM-g and XTM-e perform similar to hardware-based schemes like VTM, even 
for the most demanding applications. 

Overall, this work described and analyzed the major tradeoffs in virtualization for 
transactional memory. Its major contributions are: a) We proposed XTM, a 
software-based system that is the first to virtualize time, space, and nesting 
depth for transactional memory. XTM builds upon virtual memory and provides 
transactional execution at page granularity. b) We developed two enhancements 
to XTM that reduce the overheads of page-based virtualization: XTM-g that 
allows gradual overflow of data to virtual memory and XTM-e that supports 
conflict detection at cache line granularity. c) We provided the first quantitative 
evaluation of TM virtualization schemes for a wide range of application scenarios. 
We demonstrated that XTM and its enhancements can match the performance of 
hardware virtualization schemes like VTM or TM systems that use serialization to 
handle resource limitation. Overall, we established that a software, page-based 
approach provides an attractive solution for transparent TM virtualization. 

3.3 Hardware/Software Interface for Transactional Memory 
Several proposed systems implement transactional memory in hardware (HTM) 
using different techniques for transactional state buffering and conflict detection. 
At the instruction set level, HTM systems provide only a couple of instructions to 
define transaction boundaries and handle nested transactions through flattening. 
While such limited semantics have been sufficient to demonstrate HTM’s 
performance potential using simple benchmarks, they fall short of supporting 
several key aspects of modern programming languages and operating systems 
such as transparent library calls, conditional synchronization, system calls, I/O, 
and runtime exceptions. Moreover, the current HTM semantics are insufficient to 
support recently proposed languages and runtime systems that build upon 
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transactions to provide an easy-to-use concurrent programming model. For HTM 
systems to become useful to programmers and achieve widespread acceptance, 
it is critical to carefully design expressive and clean interfaces between 
transactional hardware and software before we delve further into HTM 
implementations. 

In this work, we defined a comprehensive instruction set architecture (ISA) for 
hardware transactional memory [22, 23]. The architecture introduces three basic 
mechanisms: (1) two phase transaction commit, (2) support for software handlers 
on transaction commit, violation, and abort, and (3) closed- and open-nested 
transactions with independent rollback. Two-phase commit enables user-initiated 
code to run after a transaction is validated but before it commits in order to 
finalize tasks or coordinate with other modules. Software handlers allow runtime 
systems to assume control of transactional events to control scheduling and 
insert compensating actions. Closed nesting is used to create composable 
programs for which a conflict in an inner module does not restrict the 
concurrency of an outer module. Open nesting allows the execution of system 
code with independent atomicity and isolation from the user code that triggered it. 
The proposed mechanisms require a small set of ISA resources, registers and 
instructions, as a significant portion of their functionality is implemented through 
software conventions. This is analogous to function call and interrupt handling 
support in modern architectures, which is limited to a few special instructions 
(e.g., jump and link or return from interrupt), but rely heavily on well-defined 
software conventions. 

We demonstrated that the three proposed mechanisms are sufficient to support 
rich functionality in programming languages and operating systems including 
transparent library calls, conditional synchronization, system calls, I/O, and 
runtime exceptions within transactions. We also argue that their semantics 
provide a solid substrate to support future developments in TM software 
research. We describe practical implementations of the mechanisms that are 
compatible with proposed HTM architectures. Specifically, we presented the 
modifications necessary to properly track transactional state and detect conflicts 
for multiple nested transactions. Using execution-driven simulation, we evaluate 
I/O and conditional synchronization within transactions. Moreover, we explore 
performance optimizations using nested transactions.  

Overall, this work is an effort to revisit concurrency support in modern instruction 
sets by carefully balancing software flexibility and hardware efficiency. Our 
specific contributions are: a) We propose the first comprehensive instruction set 
architecture for hardware transactional memory that introduces support for two-
phase transaction commit; software handlers for commit, violation, and abort; 
and closed- and open-nested transactions with independent rollback. b) We 
demonstrate that the three proposed mechanisms provide sufficient support to 
implement functionality such as transparent library calls, conditional 
synchronization, system calls, I/O, and runtime exceptions within transactions. 
No further concurrency control mechanisms are necessary for user or system 
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code. c) We implement and quantitatively evaluate the proposed ISA. We 
demonstrate that nested transactions lead to 2.2x  performance improvement for 
SPECjbb2000 over conventional HTM systems with flat transactions. We also 
demonstrate scalable performance for transactional I/O and conditional 
scheduling. 

3.4 High Level Programming with Transactional Memory  
A complete transactional environment must consider both hardware support and 
programming model issues. Specifically, we believe a transactional memory 
system should have certain key features: it should provide a programming 
language model with implicit transactions, strong atomicity, and demonstrate a 
scalable multiprocessor implementation. 

To understand why this is important, let us consider the alternatives to these 
features: 

Explicit versus implicit: Some proposals require an explicit step to make locations 
or objects part of a transaction, while other proposals make the memory 
operations’ behavior implicit on the transactional state. Implicit 
transactions require either compiler or hardware support. Older proposals 
often required explicit instructions or calls to treat specific locations or 
objects as transactional; however, most proposals now allow existing code 
to run both transactionally and non-transactionally based on the context. 
Requiring explicit transactional operations prevents a programmer from 
composing existing non-transactional code to create transactions. 
Programmers need to create and maintain transaction-aware versions of 
existing non-transactional code in order to reuse it. 

 
Weak atomicity versus strong atomicity: The atomicity criteria defines how 

transactional code interacts with non-transactional code. In proposals with 
weak atomicity, transactional isolation is only guaranteed between code 
running in transactions, which can lead to surprising and non-deterministic 
results if non-transactional code reads or writes data that is part of a 
transaction’s read or write set [39]. For example, non-transactional code 
may read uncommitted data from the transaction’s write set and non-
transactional writes to the transaction’s read set may not cause violations. 
In proposals with strong atomicity, non-transactional code does not see 
the uncommitted state of transactions and updates to shared locations by 
non-transactional code violate transactions, if needed, to prevent data 
races. From a programming model point of view, strong atomicity makes it 
easier to reason about the correctness of programs because transactions 
truly appear atomic with respect to the rest of the program. However, most 
software implementations of transactional memory have only guaranteed 
weak atomicity as a concession to performance. Recently, some hardware 
and hybrid proposals that support unlimited transaction sizes have also 
only offered weak atomicity. The problem is that programs written for one 
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atomicity model are not guaranteed to work on the other; for a 
transactional program to be truly portable, it has to be written with a 
specific atomicity model in mind, potentially hindering its reuse on other 
systems. 

 
Library versus programming language: Some proposals treat transactions simply 

as a library, while others integrate transactions into the syntax of the 
programming language. There are many issues with not properly 
integrating concurrency primitives with programming language semantics 
as shown in recent work on the Java Memory Model and threads in C and 
C++. Clear semantics are necessary to allow modern optimizing compilers 
to generate safe yet efficient code for multi-processor systems as well as 
perform transactional memory specific optimizations. 

 
Uniprocessor versus multiprocessor: Some proposals require a uniprocessor 

implementation for correctness, while others take advantage of 
multiprocessor scaling. Since trends indicate a move to multiprocessors, 
new programming languages should make it easy to exploit these 
resources. In order to properly evaluate transactional memory as an 
abstraction to simplify parallel programming, it is important for proposals to 
provide a multiprocessor implementation. 

 
In this work, we introduce the Atomos transactional programming language, 
which is the first to include implicit transactions, strong atomicity, and a scalable 
multiprocessor implementation [47]. Atomos is derived from Java, but replaces its 
synchronization and conditional waiting constructs with transactional alternatives. 
The Atomos conditional waiting proposal is tailored to allow efficient 
implementation with the limited transactional contexts provided by hardware 
transactional memory. There have been several proposals from the software 
transactional memory community for conditional waiting primitives that take 
advantage of transactional conflict detection for efficient wakeup. By allowing 
programmers more control to specify their conditional dependencies, Atomos 
allows the general ideas of these earlier proposals to be applied in both hardware 
and software transactional memory environments. 

Atomos supports open-nested transactions, which we found necessary for 
building both scalable application programs and virtual machine implementations. 
Open nesting allows a nested transaction to commit before its parent transaction. 
This allows for parent transactions to be isolated from possible contention points 
in a more general way than other proposals like early release, which only allows 
a program to remove a location from its read set to avoid violations. 

In this work, we make the following specific contributions: a) We introduce 
Atomos, the first programming language with strongly atomic transactional 
memory and a scalable multiprocessor implementation. b) We introduce the 
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watch and retry statements to allow fine-grained conditional waiting, which is 
more scalable than other coarse-grained proposals in hardware environments 
with limited transactional contexts. c) We introduce the open statement to create 
nested transactions that commit independently from their parent. d) We introduce 
the concept of violation handlers to transactional memory to allow virtual machine 
implementations to handle expected violations without rolling back. 

In our evaluation, implicit transactions and strong atomicity are supported by the 
Transactional Coherence and Consistency (TCC) hardware transactional 
memory model. The scalable implementation is built on the design of the 
underlying Jikes Research Virtual Machine (Jikes RVM) and Transactional 
Coherence and Consistency protocol. Using this environment, we evaluate the 
relative performance of Atomos and Java to demonstrate the value of 
programming with transactions. We show not only savings from the removal of 
lock overhead, but speedup from optimistic concurrency. While Jikes RVM and 
TCC are well suited to supporting Atomos, there is nothing about Atomos that 
fundamentally ties it to these systems. Atomos’s toughest requirement on the 
underlying transactional memory system is strong atomicity, which lends itself 
more naturally toward a hardware transactional memory-based implementation. 
Although there has been recent research into strongly atomic software 
transactional memory systems, native code poses a further challenge to their use 
by Atomos. Typically these systems prohibit the calling of native code within 
transactions, significantly restricting the flexibility of the program. Atomos 
leverages the Jikes RVM scheduler thread architecture in its implementation of 
conditional waiting, but the design could be adapted to other timer-based 
schedulers. 
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